首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A nonautonomous Lotka–Volterra dispersal system with continuous delays and discrete delays is considered. By using a comparison theorem and delay differential equation basic theory, we obtain sufficient conditions for the permanence of the population in every patch. By constructing a suitable Lyapunov functional, we prove that the system is globally asymptotically stable under some appropriate conditions. Using almost periodic functional hull theory, we get sufficient conditions for the existence, uniqueness and globally asymptotical stability for an almost periodic solution. This implies that the population in every patch exhibits stable almost periodic fluctuation. Furthermore, the results show that the permanence and global stability of system, and the existence and uniqueness of a positive almost periodic solution, depend on the delay; then we call it “profitless”.  相似文献   

6.
A predator–prey system with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and two boundary equilibria of the system is discussed, respectively. Further, the existence of a Hopf bifurcation at the positive equilibrium is also studied. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and one of the boundary equilibria of the proposed system. As a result, the threshold is obtained for the permanence and extinction of the system. Numerical simulations are carried out to illustrate the main results.  相似文献   

7.
In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well‐posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovski? operator for irrotational vector fields, which we discuss in the appendix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we integrate both density‐dependent diffusion process and Beddington–DeAngelis functional response into virus infection models to consider their combined effects on viral infection and its control. We perform global analysis by constructing Lyapunov functions and prove that the system is well posed. We investigated the viral dynamics for scenarios of single‐strain and multi‐strain viruses and find that, for the multi‐strain model, if the basic reproduction number for all viral strains is greater than 1, then each strain persists in the host. Our investigation indicates that treating a patient using only a single type of therapy may cause competitive exclusion, which is disadvantageous to the patient's health. For patients infected with several viral strains, the combination of several therapies is a better choice. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider the strongly nonlinear Nernst–Planck equations coupled with the quasi‐linear Poisson equation under inhomogeneous, moreover, nonlinear boundary conditions. This system describes joint multi‐component electrokinetics in a pore phase. The system is supplemented by the force balance and by the volume and positivity constraints. We establish well‐posedness of the problem in the variational setting. Namely, we prove the existence theorem supported by the energy and the entropy a‐priori estimates, and we provide the Lyapunov stability of the solution as well as its uniqueness in special cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new approach to the analysis of asymptotic stability of artificial neural networks (ANN) with multiple time-varying delays subject to polytope-bounded uncertainties. This approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation without including any additional dynamics.Three examples with numerical simulations are used to illustrate the effectiveness of the proposed method. The first example considers the neural network with multiple time-varying delays, which may be seen as a particular case of the second example where it is subject to uncertainties and multiple time-varying delays. Finally, the third example analyzes the stability of the neural network with higher numbers of neurons subject to a single time-delay. The Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability in the bifurcation point.  相似文献   

13.
This work provides a mathematical model for a predator‐prey system with general functional response and recruitment, which also includes capture on both species, and analyzes its qualitative dynamics. The model is formulated considering a population growth based on a general form of recruitment and predator functional response, as well as the capture on both prey and predators at a rate proportional to their populations. In this sense, it is proved that the dynamics and bifurcations are determined by a two‐dimensional threshold parameter. Finally, numerical simulations are performed using some ecological observations on two real species, which validate the theoretical results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with well‐posedness results for a mathematical model for the transversal vibrations of a two‐dimensional hybrid elastic structure consisting of a rectangular Reissner–Mindlin plate with a Timoshenko beam attached to its free edge. The model incorporates linear dynamic feedback controls along the interface between the plate and the beam. Classical semigroup methods are employed to show the unique solvability of the coupled initial‐boundary‐value problem. We also show that the energy associated with the system exhibits the property of strong stability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We study two novel decoupled energy‐law preserving and mass‐conservative numerical schemes for solving the Cahn‐Hilliard‐Darcy system which models two‐phase flow in porous medium or in a Hele–Shaw cell. In the first scheme, the velocity in the Cahn–Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn–Hilliard equation. In the second scheme, an intermediate velocity is used in the Cahn–Hilliard equation which allows for the decoupling. We show that the first scheme preserves a discrete energy law with a time‐step constraint, while the second scheme satisfies an energy law without any constraint and is unconditionally stable. Ample numerical experiments are performed to gauge the efficiency and robustness of our scheme. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 936–954, 2016  相似文献   

16.
In this paper, we study the exponential stability of a two‐dimensional Schrödinger–heat interconnected system in a torus region, where the interface between the Schrödinger equation and the heat equation is of natural transmission conditions. By using a polar coordinate transformation, the two‐dimensional interconnected system can be reformulated as an equivalent one‐dimensional coupled system. It is found that the dissipative damping of the whole system is only produced from the heat part, and hence, the heat equation can be considered as an actuator to stabilize the whole system. By a detailed spectral analysis, we present the asymptotic expressions for both eigenvalues and eigenfunctions of the closed‐loop system, in which the eigenvalues of the system consist of two branches that are asymptotically symmetric to the line Reλ =? Imλ. Finally, we show that the system is exponentially stable and the semigroup, generated by the system operator, is of Gevrey class δ > 2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A non-autonomous Lotka–Volterra competition system with infinite delays and feedback control and without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the system. Some new results are obtained.  相似文献   

18.
Time‐discrete variational schemes are introduced for both the Vlasov–Poisson–Fokker–Planck (VPFP) system and a natural regularization of the VPFP system. The time step in these variational schemes is governed by a certain Kantorovich functional (or scaled Wasserstein metric). The discrete variational schemes may be regarded as discretized versions of a gradient flow, or steepest descent, of the underlying free energy functionals for these systems. For the regularized VPFP system, convergence of the variational scheme is rigorously established. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We propose an original scheme for the time discretization of a triphasic Cahn–Hilliard/Navier–Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn–Hilliard and Navier‐Stokes system, which is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved, and a convergence study is performed in the case where the densities of the three phases are the same. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq. 2013  相似文献   

20.
Immunotherapies are important methods for controlling and curing malignant tumors. Based on recent observations that many tumors have been immuno‐selected to evade recognition by the traditional cytotoxic T lymphocytes, we propose mathematical models of tumor–CD4+–cytokine interactions to investigate the role of CD4+ on tumor regression. Treatments of either CD4+ or cytokine are applied to study their effectiveness. It is found that doses of treatments are critical in determining the fate of the tumor, and tumor cells can be eliminated completely if doses of cytokine are large. Bistability is observed in models with either of the treatment strategies, which signifies that a careful planning of the treatment strategy is necessary for achieving a satisfactory outcome. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号