首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of (beta-phenylethynyl)pentafluorocyclotriphosphazene, F5P3N3C identical with CPh, with in situ generated eta5-(MeOC(O)C5H4)Co(PPh3)2 resulted in the formation of two isomers of cobaltacyclopentadienylmetallacycles, (eta(5)-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,5-bis(pentafluorocyclotriphosphazenyl)-3,4-diphenyl cobaltacyclopentadiene (1) and (eta5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,4-bis(pentafluorocyclotriphosphazenyl)-3,5-diphenyl cobaltacyclopentadiene (2), along with the sandwich compound [eta5-carbomethoxycyclopentadienyl]-[eta4-1,3-bis(pentafluorocyclotriphosphazenyl)-2,4-diphenylcyclobutadiene]cobalt (3). Formation of cobaltacyclopentadienylmetallacycles or cyclobutadienylmetallocene having two fluorophosphazene units on vicinal carbon atoms of the rings was not observed in this reaction. Reaction of 1 with diphenylacetylene resulted in the formation of a novel aryl-bridged fluorophosphazene, 1,4-bis(pentafluorocyclotriphosphazenyl)-2,3,5,6-tetraphenyl benzene (4), and the conversion of cobaltametallacycle to the sandwich compound, [eta5-(MeOC(O)C5H4]Co(eta4-C4Ph4) (5). Reaction of 1 with phenylacetylene resulted in the formation of aryl-bridged fluorophosphazene, 1,4-bis(pentafluorophosphazenyl)-2,3,5,-triphenyl benzene (6). New compounds 1-4 were structurally characterized. In compound 1, the two fluorophosphazene units were oriented in gauche form with respect to each other. However, in compounds 2 and 3, they were eclipsed to each other, and in compound 4, they were oriented anti to each other.  相似文献   

2.
The Friedel-Crafts reaction of (η(4)-tetraphenylcyclobutadiene)(η(5)-carbomethoxycyclopentadienyl)cobalt with acid chlorides/aluminum chloride resulted exclusively in para-phenyl acylation. Both monoacylated (1.1 equiv of RCOCl/AlCl(3)) and tetraacylated products (>4 equiv of RCOCl/AlCl(3)) were synthesized. Reaction of PhCC(o-RC(6)H(4)) (R = Me, i-Pr) with Na(C(5)H(4)CO(2)Me) and CoCl(PPh(3))(3) gave predominantly (η(4)-1,3-diaryl-2,4-diphenylcyclobutadiene)(η(5)-carbomethoxycyclopentadienyl)cobalt metallocenes (1,3-[trans] vs 1,2-[cis] selectivity up to 6:1). Conformational control of Friedel-Crafts reactions on the major isomers gave exclusively para-acylation of the unsubstituted phenyl groups.  相似文献   

3.
1,3-Diaryl-4H-cyclopenta[c]thiophenes are efficiently prepared from 1,2-diaroylcyclopentadienes by use of Lawesson's reagent. eta5-Cyclopenta[c]thienyl complexes, [Mn(eta5-SC7H3-1,3-R2)(CO)3] (R = Me, Ph), are prepared in high yield by ligand substitution reactions of [MnBr(CO)5] with [SnMe3(SC7H3-1,3-R2)]. Alternatively, thiation with P4S10/NaHCO3 converts [Mn{eta5-1,2-C5H3(COR)2)(CO)3] to [Mn(eta5-SC7H3-1,3-R2)(CO)3] (R = Ph, 4-tolyl, 4-MeOC6H4, benzo[2,3-b]thienyl). The molecular structures of complexes with R = Me, Ph show planar eta5-cyclopenta[c]thienyl ligands, with the manganese atom slightly displaced away from the ring-fusion bond.  相似文献   

4.
We used extended Hückel calculations, variable-temperature, homonuclear long-range shift-correlated 2-D 1H NMR and dynamic NOE measurements to investigate rotational phenomena of substituent phenyl rings on (η5-cyclopentadienyl)(η4tetraphenylcyclobutadiene)cobalt (1). Two closely related compounds, (η5-cyclopentadienyl)(η4-1,3-diphenylcyclobutadiene)cobalt (A) and (η5-cyclopentadienyl)(η4-1,2-diphenylcyclobutadiene)cobalt (A′), were prepared. Energy minima appeared at conformations of which the dihedral angles between phenyl and cyclobutadiene rings are about 30° for I and 0° for A according to extended Hückel calculations. In 1, ortho protons of phenyl rings belong to one set of multiplet in 1H NMR; meta and para protons belong to the other. It was supported by a long-range coupling 2-D 1H NMR and NOE experiments. A sharp line due to phenyl rings was observed in the low-temperature 1H NMR spectrum of A, which indicates that the five protons are magnetically equivalent at that temperature.  相似文献   

5.
Byun D  Zink JI 《Inorganic chemistry》2003,42(14):4308-4315
Gas-phase photoreactions and photoproducts of the mixed-ligand compound (eta(4)-cycloocta-1,5-diene)(eta(5)-cyclopentadienyl)cobalt are reported. Significant amounts of the monoligated complexes CoCOD and CoCp are produced, and the relative amounts are wavelength dependent. The COD ligand (with the weakest metal-ligand bonds) is always preferentially labilized as expected, but the relative amounts of the CoCOD and CoCp fragments change by 1 order of magnitude as the excitation wavelength is changed. The gas-phase photoreactions exhibit other surprising features that are uncommon in the photoreactions of organometallic compounds in the gas phase. Significant amounts of the intact cation are formed, in contrast to most reported reactions where fragmentation of the weak metal-ligand bonds precedes ionization. Most surprisingly, fragmentation of the ligands occurs while the ligands are still coordinated. The resulting metal complexes contain ligand fragments that remain coordinated to the metal. Breaking several carbon-carbon bonds with retention of weaker metal-ligand bonds is unexpected. For example, C(5)H(5) undergoes fragmentation while still coordinated to the cobalt, yielding smaller compounds such as Co(CH)(+), Co(C(2)H(2))(+), Co(C(3)H(3))(+), and Co(C(4)H(6))(+). Correspondingly, coordinated COD yields Co(C(6)H(6))(+), Co(C(5)H(5))(+), Co(C(4)H(6))(+), Co(C(3)H(3))(+), Co(C(2)H(2))(+), and Co(CH)(+). The wavelength dependence of the ligand labilization is examined by utilizing mass-selected resonance enhanced multiphoton ionization spectroscopy. Both broad bands and sharp lines are observed in the mass-selected excitation spectra. The action spectra obtained in the gas phase while monitoring the cobalt ion follow the absorption onset found in solution. The changes in fragmentation pathways are interpreted in terms of the initially accessed excited state.  相似文献   

6.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

7.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

8.
A (phenylenediselenolato)cobalt complex dimer, [Co(eta(5)-C(5)H(5))(Se(2)C(6)H(4))](2) (1), was synthesized by a reaction of carbonyl(eta(5)-cyclopentadienyl)diiodocobalt(III) ([Co(eta(5)-C(5)H(5))I(2)(CO)]) with poly(o-diselenobenzene). The structure of 1, determined by single-crystal X-ray crystallography, was found to be located in the space group of P2(1)/c (No. 14), with a = 9.3346(5) A, b = 11.6477(9) A, c = 10.2179(5) A, beta = 111.491(1) degrees, and Z = 2. Covalent Co-Se bonds bridge the metal centers. In solution, dimers and monomers coexist at equilibrium. The dissociation equilibrium constant of 1 in solution was evaluated by (1)H NMR spectra at several temperatures between 20 and 80 degrees C. Dissociation enthalpies/entropies were found to be 50/110, 60/120, and 88 kJ mol(-1)/200 J K(-1) mol(-1) in dimethyl sulfoxide-d(6), benzene-d(6), and chloroform-d(1), respectively.  相似文献   

9.
Treatment of the bis(iminobenzyl)pyridine chelate Schiff-base ligand 8 (ligPh) with FeCl2 or CoCl2 yielded the corresponding (ligPh)MCl2 complexes 9 (Fe) and 10 (Co). The reaction of 10 with methyllithium or "butadiene-magnesium" resulted in reduction to give the corresponding (ligPh)Co(I)Cl product 11. Similarly, the bis(aryliminoethyl)pyridine ligand (ligMe) was reacted with CoCl2 to yield (ligMe)CoCl2 (12). Reduction to (ligMe)CoCl (13) was effected by treatment with "butadiene-magnesium". Complex 13 reacted with Li[B(C6F5)4] in toluene followed by treatment with pyridine to yield [(ligMe)Co+-pyridine] (15). The reaction of the Co(II) complexes 10 or 12 with ca. 3 molar equiv of methyllithium gave the cobalt(I) complexes 16 and 17, respectively. Treatment of the (ligMe)CoCH3 (17) with Li[B(C6F5)4] gave a low activity ethene polymerization catalyst. Likewise, complex 16 produced polyethylene (activity = 33 g(PE) mmol(cat)(-1) h(-1) bar(-1) at room temperature) upon treatment with a stoichiometric amount of Li[B(C6F5)4]. A third ligand (lig(OMe)) was synthesized featuring methoxy groups in the ligand backbone (22). Coordination to FeCl2 and CoCl2 yielded the desired compounds 23 and 24. Reaction with MeLi gave (ligOMe)CoMe (25/26). Treatment of 25/26 with excess B(C6F5)3 gave the eta6-arene cation complex 27, where one Co-N linkage was cleaved. Activation of 25/26 with Li[B(C6F5)4] again gave a catalytically active species.  相似文献   

10.
The reaction of diarylacetylenes with CoCl(PPh3)3 and sodium cyclopentadienylide or sodium carbomethoxycyclopentadienylide gave (η4-tetra-arylcyclobutadiene)(η5-cyclopentadienyl)cobalt and (η4-tetra-arylcyclobutadiene)(η5-carbomethoxycyclopentadienyl)cobalt, respectively, where aryl = para-XC6H4 (X = CF3, F, MeO). The reaction was unsuccessful for the synthesis of (η4-tetra(para-methoxyphenyl)cyclobutadiene)(η5-cyclopentadienyl)cobalt, which was synthesised instead from dicarbonyl(η5-cyclopentadienyl)cobalt. In all of the examples starting with CoCl(PPh3)3 an intermediate (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complex was isolated, and two examples were characterised by X-ray crystallography. Heating the (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complexes resulted in clean conversion to the corresponding metallocenes. The influence of the para-aryl substituents on the 1H NMR of the cyclopentadienyl moiety is tabulated, together with the influence of a range of R substituents in (η4-tetraphenylcyclobutadiene)(η5-RC5H4)cobalt (R = CO2Me, CH2OH, Me, CHO, CCH, CO2H, CN, CONHR1, 2-oxazolinyl, NH2, NHAc, HgCl, Br, I, SiMe3, SnMe3, Ph).  相似文献   

11.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

12.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

13.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

14.
Counteranion effects on propylene polymerization rates and stereoselectivities are compared using Cs-symmetric Me2C(Cp)(Flu)ZrMe2 (1; Cp = C5H4,eta5-cyclopentadienyl; Flu = C13H8, eta5-fluorenyl) and C1-symmetric Me2Si(OHF)(CpR*)ZrMe2 (2; OHF = C13H16, eta5-octahydrofluorenyl; CpR* = eta5-3-(-)-menthylcyclopentadienyl) precatalysts activated with the mononuclear and polynuclear perfluoroarylborate, -aluminate, and -gallate cocatalysts/activators B(C6F5)3 (3), B(o-C6F5C6F4)3 (4), Al(C6F5)3 (5), Ph3C+B(C6F5)4- (6) Ph3C+FAl(o-C6F5C6F4)3- (7), Ga(C6F5)3 (8), and recently reported mono- and polymetallic trityl perfluoroarylhalometalates Ph3C+FB(C6F5)3- (9), Ph3C+FB(o-C6F5C6F4)3- (10), (Ph3C+)xFx[Al(C6F5)3]yx- (x = 1, y = 1, 11; x = 1, y = 2, 12; x = 2, y = 3, 13), Ph3C+(C6F5)3AlFAl(o-C6F5C6F4)3- (14), Ph3C+XAl(C6F5)3- (X = Cl, 15; X = Br, 16), and Ph3C+F[Ga(C6F5)3]2- (17). Temperature, propylene concentration, and solvent polarity dependence are surveyed in polymerizations catalyzed by 1 activated with cocatalysts 3-16 and with a 1:2 ratio of Ph3CCl and 5, and with a 1:2 ratio of Ph3CBr and 5, and by 2 activated with 3, 6, 7, 12, and 14. Remarkable stereocontrol with high activities is observed for 1 + 12 and 1 + 14. Polypropylene samples produced using C1-symmetric precatalyst 2 are subjected to microstructural analyses using stochastic models describing the relative contributions of enantiofacial misinsertion and backskip processes. A powerful technique is introduced for calculating interparametric correlation matrices for these nonlinear stochastic models. The collected results significantly extend what is known about ion-pairing effects in the case of Cs-symmetric precatalyst 1 and allow these findings to be applied to the case of C1-symmetric precatalyst 2 as an agent of isospecific propylene polymerization.  相似文献   

15.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

16.
Metalladichalcogenolate cluster complexes [{CpCo(S2C6H4)}2Mo(CO)2] (Cp = eta(5)-C5H5) (3), [{CpCo(S2C6H4)}2W(CO)2] (4), [CpCo(S2C6H4)Fe(CO)3] (5), [CpCo(S2C6H4)Ru(CO)2(P(t)Bu3)] (6), [{CpCo(Se2C6H4)}2Mo(CO)2] (7), and [{CpCo(Se2C6H4)}(Se2C6H4)W(CO)2] (8) were synthesized by the reaction of [CpCo(E2C6H4)] (E = S, Se) with [M(CO)3(py)3] (M = Mo, W), [Fe(CO)5], or [Ru(CO)3(P(t)Bu3)2], and their crystal structures and physical properties were investigated. In the series of trinuclear group 6 metal-Co complexes, 3, 4, and 7 have similar structures, but the W-Se complex, 8, eliminates one cobalt atom and one cyclopentadienyl group from the sulfur analogue, 4, and does not satisfy the 18-electron rule. 1H NMR observation suggested that the CoW dinuclear complex 8 was generated via a trinuclear Co2W complex, with a structure comparable to 7. The trinuclear cluster complexes, 3, 4, and 7, undergo quasi-reversible two-step one-electron reduction, indicating the formation of mixed-valence complexes Co(III)M(0)Co(II) (M = Mo, W). The thermodynamic stability of the mixed-valence state increases in the order 4 < 3 < 7. In the dinuclear group 8 metal-Co complexes, 5 and 6, the CpCo(S2C6H4) moiety and the metal carbonyl moiety act as a Lewis acid character and a base character, respectively, as determined by their spectrochemical and redox properties. Complex 5 undergoes reversible two-step one-electron reduction, and an electron paramagnetic resonance (EPR) study indicates the stepwise reduction process from Co(III)Fe(0) to form Co(III)Fe(-I) and Co(II)Fe(-I).  相似文献   

17.
The synthesis and structural characterization of the hexafluorophosphate salts of the substituted bis-amido molecular complexes [Co(III)(eta5-C5H4CONHC4H3N2)2]+ (1), [Co(III)(eta5-C5H4CONHCH2C5H4N)2]+ (2), [Co(III)(eta5-C5H4CON(C5H4N)2)2]+ (3), and of the amido-carboxyl complexes [Co(III)(eta5-C5H4CON(C5H4N)2)(eta5-C5H4COOH)]+ (4), and [Co(III)(eta5-C5H4CONHC2N3(C5H4N)2)(eta5-C5H4COOH)]+ (5) are reported. The pyridyl and pyrazine substituted amido ligands on the sandwich cores have been chosen because they allow both coordination to metal centres and participation in hydrogen bonding. The hydrogen bonding interactions established by the family of complexes in the solid state has been investigated. The utilization of complex 5 for the preparation of the complex of complexes[Cd(NO3)2{Co(III)(eta5-C5H4CONHC2N3(C5H4N)(C5H4NH))(eta5-C5H4COOH)}2]6+ (6) is reported as a first example of the potential of the substituted mono-and bis-amides as ligands. The isolation and structural characterization of the carbonyl chloride cation [Co(III)(eta5-C5H4COCl)2]+ (7) as its tetrachloro cobaltate anion salt is also described.  相似文献   

18.
A simple procedure for the preparation of cationic arene complexes of Ni(II) of composition [Ni(eta 6-ArX)(eta 3-C3H5)]+[BAr'4]- (X = OH, H) is reported. These compounds are shown to behave as highly active catalysts for the polymerization of 1,3-butadiene and styrene.  相似文献   

19.
A series of luminescent branched platinum(II) alkynyl complexes, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]C-C6H4C[triple bond]C}3C6H3] (R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, C6H4SAc, 1-napthyl (Np), 1-pyrenyl (Pyr), 1-anthryl-8-ethynyl (HC[triple bond]CAn)), [1,3-{PyrC[triple chemical bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], and [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], was successfully synthesized by using the precursors [1,3,5-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] or [1,3-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3]. The X-ray crystal structures of [1,3,5-{MeOC6H4C[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An] have been determined. These complexes were found to show long-lived emission in both solution and solid-state phases at room temperature. The emission origin of the branched complexes [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, and C6H4SAc was tentatively assigned to be derived from triplet states of predominantly intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(C[triple bond]CR)) character, while the emission origin of the branched complexes with polyaromatic alkynyl ligands, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=Np, Pyr, or HC[triple bond]CAn, [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An], was tentatively assigned to be derived from the predominantly 3IL states of the respective polyaromatic alkynyl ligands, mixed with some 3MLCT (d(pi)(Pt)-->pi*(C[triple bond]CR)) character. By incorporating different alkynyl ligands into the periphery of these branched complexes, one could readily tune the nature of the lowest energy emissive state and the direction of the excitation energy transfer.  相似文献   

20.
The nickelacarboranes [NEt(4)][2-(eta(3)-C(3)H(4)R)-closo-2,1,7-NiC(2)B(9)H(11)] (R = H (1a), Ph (1b)) have been synthesized via reaction between [Na](2)[nido-7,9-C(2)B(9)H(11)] and [Ni(2)(micro-Br)(2)(eta(3)-C(3)H(4)R)(2)] in THF (THF = tetrahydrofuran), followed by addition of [NEt(4)]Cl. Protonation of 1a in the presence of a donor ligand L affords the complexes [2,2-L(2)-closo-2,1,7-NiC(2)B(9)H(11)] (L = CO (2), CNBu(t) (3)). Addition of PEt(3) (1 equiv) to 2 produces quantitative conversion to [2-CO-2-PEt(3)-closo-2,1,7-NiC(2)B(9)H(11)], 4. Species 2-4 exhibit in solution hindered rotation of the NiL(2) fragment with respect to the eta(5)-C(2)B(9) cage unit. Protonation of 1a in the presence of a diene affords the neutral complexes [2-(eta(2):eta(2)-diene)-closo-2,1,7-NiC(2)B(9)H(11)] (diene = C(5)Me(5)H (5), dcp (6), cod (7), nbd (8), chd (9), and cot (10a); dcp = dicyclopentadiene, cod = 1,5-cyclooctadiene, nbd = norbornadiene, chd = 1,3-cyclohexadiene, and cot = cyclooctatetraene). Variable temperature (1)H NMR experiments show that the [Ni(diene)] fragments are freely rotating even at 193 K. A small quantity of the di-cage species [2,2'-micro-(1,2:5,6-eta-3,4:7,8-eta-cot)-(closo-2,1,7-NiC(2)B(9)H(11))(2)] (10b) is formed as a coproduct in the synthesis of 10a. This species can be rationally synthesized by protonation of 1a and subsequent addition of 10a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号