首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene oxide) (PEO) adsorption on colloidal silica particles was studied by small-angle neutron scattering under the core-contrast-matching condition. The volume fraction profile of the adsorbed layer was derived by modeling the average layer scattering term. It was found that, with increasing colloid concentration, the adsorbed PEO layers collapse due to the repulsions between adsorbed layers on neighboring particles. At the same time, the correlation length in the adsorbed layer obtained by fitting the layer fluctuation scattering term was found to decrease, indicating that denser polymer layers are formed. These two observations are self-consistent.  相似文献   

2.
By means of the electrospinning technique we have successfully synthesized cyclodextrin (CD) functionalized polyethylene oxide (PEO) nanofibers (PEO/CD) with the ultimate goal to develop functional nanowebs. Three different types of CDs; α-CD, β-CD and γ-CD are incorporated individually in electrospun PEO nanofibers. The aqueous solutions containing different amount of PEO (3%, 3.5% and 4% (w/v), with respect to solvent) and CDs (25% and 50% (w/w), with respect to PEO) are electrospun and bead-free nanofibers are obtained. The presence of the CDs in the PEO solutions is found to facilitate the electrospinning of bead-free nanofibers from the lower polymer concentrations and this behavior is attributed to the high conductivity and viscosity of the PEO/CD solutions. The presence of CDs in the electrospun PEO nanofibers is confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The 2-D X-ray diffraction (XRD) spectra of PEO/CD nanowebs did not show any significant diffraction peaks for CDs indicating that the CD molecules are distributed within the polymer matrix without any phase separated crystalline aggregates.  相似文献   

3.
The structure and dynamics of polymer-grafted two-dimensional silicate layers in solution were investigated. The geometry of the individual silicate layers was examined by looking at both polarized and depolarized light scattering from dilute solutions, while higher-concentration systems were used to study the interaction and dynamics of polymer-grafted silicate layers in suspension. The form factor for an oblate ellipsoid was used to fit the polarized intensity profile, and values of a approximately 80 nm and b approximately 380 nm for the semi-axes were obtained. The 80 nm value compares reasonably with the dimensions of the polymer brushes grafted on the surface of the silicate layers. The modulus of the grafted silicate in solution, as determined by Brillouin scattering, is of the order of 10 GPa. The cooperative diffusion mechanism, typical of interacting polymer chains, is suppressed due to the high polymer osmotic pressure. The osmotic pressure is also responsible for the weak interpenetration of the densely grafted polymer chains on the surface of the silicate layers. The scattering data indicates that the polymer-grafted nanoparticles move via collective diffusion and experience significant decrease in mobility above their overlap concentration.  相似文献   

4.
5.
The adsorption of poly(ethylene oxide) (PEO) on synthetic anisotropic clay particles (Laponite) has been investigated as a function of the molecular weight. Contrast variation small-angle neutron scattering (SANS) measurements were used to characterize the distribution and adsorbed amount of polymer on the particles. These experiments show not only that polymer is present on the face of the clay particle but that it also extends or "wraps" over the edges. The edge layer was thicker than the face layer for all the molecular weights studied. The polymer layers are unusually thin, with a thickness and adsorbed amount that show little variation with molecular weight.  相似文献   

6.
Nanoassemblies (NAs) with sizes ranging from 60 to 160nm were spontaneously formed in water after mixing a host polymer (polymerized cyclodextrin (pβ-CD)) and a guest polymer (dextran grafted with lauroyl side chains (MD)). The combination of microscopy, dynamic light scattering (DLS), nuclear magnetic resonance ((1)H NMR), isothermal titration calorimetry (ITC) and molecular modelling was used to investigate the parameters which govern the association between MD and pβ-CD. Remarkably, when pβ-CD was progressively added to a solution of MD, NAs with a well-defined diameter were spontaneously formed and their diameter was constant whatever the composition of the system. According to NMR data, almost all the alkyl chains of MD were included into CDs' cavities of the polymer when the molar ratio lauroyl chain (C(12))/CD was ?1. The hydrophobic interaction between C(12) and the hydrophobic cavities of CDs appears as the main driving force for NAs' formation, with a minor contribution arising from van der Waals' interactions. The inclusion of C(12) into β-CD cavities is almost a completely enthalpy-driven process, whereas the MD-C(12)/pβ-CD interaction was found to be an entropy-driven process. Major conclusions which can be drawn from these studies are that the interactions between the two polymers are restricted neither by the MD substitution yield, nor by the micellization of MD. The simultaneous effects of several CD linked together in pβ-CD and of many alkyl chains grafted on dextran were necessary to generate these stable NAs.  相似文献   

7.
Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) is a modified β‐cyclodextrin (β‐CD) derivative, which is toxicologically harmless to mammals and other animals. HP‐β‐CD is electrospun from an aqueous solution by blending with a non‐toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). Aqueous solutions containing different HP‐β‐CD/PEO blends (50:50–80:20) with variable concentrations (4 wt%–12 wt%) were used. Scanning electron microscope was used to investigate the morphology of the fibers, and Fourier transform infrared spectroscopy analysis confirmed the presence of HP‐β‐CD in the fiber. Uniform nanofibers with an average diameter of 264, 244, and 236 nm were obtained from 8 wt% solution of 50:50, 60:40, and 70:30 HP‐β‐CD/PEO, respectively. The average diameter of the fiber was decreased with increasing of HP‐β‐CD/PEO ratio. However, a higher proportion of HP‐β‐CD in the spinning solution increased beads in the fibers. The polymer concentration had no significant effect on the fiber diameter. The most uniform fibers with the narrowest diameter distribution were obtained from the 8 wt% of 50:50 solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective when the PEO layer is in a molecular brush conformation having a reciprocal grafting density (area per grafted PEO chain) less than the dimensions of the protein molecules. Nevertheless, the protein molecules may penetrate the PEO brush to some extent. For a given grafting density, the penetration is facilitated by increasing thickness of the brush. Tenuous brushes of reciprocal grafting densities exceeding the protein molecular dimensions enhance protein adsorption. The results point to a weak attractive interaction between PEO and protein. The protein repellency of a densely PEO-brushed surface is ascribed to a high activation energy for the protein molecules to enter the brush. Varying the temperature between 22 and 38 degrees C does not significantly affect the range of grafting density over which the brush changes from protein-attractive to protein-repellent.  相似文献   

9.
Small-angle neutron scattering (SANS) studies of aqueous dispersions of St?ber silica particles (which have been hydrophobised by having 1-octadecanol grafted to their surface), carrying an adsorbed layer of the nonionic surfactant C12E24, in water, have been performed as a function of temperature. Using mixtures of D2O and H2O, the composition of the continuous phase was adjusted to have the same scattering length density as the silica particles. Hence, only the scattering from the 1-octadecanol and C12E24 layers was detected. The data have been analyzed using both a surface Guinier analysis and a two-layer structure model. It has been found that a step profile best describes the inner combined adsorbed layer (1-octadecanol grafted chains, plus the penetrating alkyl chains from the surfactant) and a semi-Gaussian profile the extended poly(ethylene oxide) outer layer. Both analyses demonstrated that the combined surface layer contracted with increasing temperature.  相似文献   

10.
Aqueous solutions of alpha-cyclodextrin (alpha-CD) complex spontaneously with poly(ethylene oxide) (PEO), forming a supramolecular structure known as pseudopolyrotaxane. We have studied the formation of the complex obtained from the threading of alpha-CD onto PEO, both free in solution and adsorbed on colloidal silica. The kinetics of the reaction were studied by gravimetric methods and determined as a function of temperature and solvent composition for the PEO free in solution. PEO was then adsorbed on the surface of colloidal silica particles, and the monomers were displaced by systematically varying the degree of complexation, the concentration of particles, and the molecular weight of the polymer. The effect of the size of the silica particles on the yield of the reaction was also studied. With the adsorbed PEO, the complexation was found to be partial and to take place from the tails of the polymer. The formation of a gel network containing silica at high degrees of complexation was observed. Small-angle X-ray and neutron scattering experiments were performed to study the configuration of the polymeric chains and confirmed the partial desorption of the polymer from the surface of the silica upon complexation.  相似文献   

11.
Highly conductive, crystalline, polymer electrolytes, β‐cyclodextrin (β‐CD)–polyethylene oxide (PEO)/LiAsF6 and β‐CD–PEO/NaAsF6, were prepared through supramolecular self‐assembly of PEO, β‐CD, and LiAsF6/NaAsF6. The assembled β‐CDs form nanochannels in which the PEO/X+ (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion.  相似文献   

12.
Ultrafine polymer nanoparticles based on poly(ethylene oxide) (PEO) macromonomer-grafted polystyrene (PS) have been synthesised by emulsifier-free emulsion polymerisation. In addition to the binary copolymerisation between PEO macromonomer and styrene, ternary copolymerisations were also conducted in the presence of a cationic monomer (2-(methacryloyloxy)ethyl) trimethylammonium chloride (MATMAC) as a second comonomer. The size and charge characteristics of fine nanoparticles were characterised using both photon correlation spectroscopy and transmission electron microscopy techniques as well as colloidal titration. It was found that after PEO chains (repeat unit 9 or higher) were incorporated into the PS latex, the particle size was significantly reduced owing to the steric effect contributed from grafted PEO chains. Ternary copolymerisation using MATMAC as comonomer further reduced the particle size, leading to nanoparticles as small as 60 nm. Increasing the MATMAC feed ratio gradually reduced the final size of the nanoparticle, owing to the enhancement in electrostatic stabilisation, whereas increasing the PEO macromonomer feed ratios led to slightly larger particles but significantly inhibited the agglomeration of primary particles. The formation mechanism of the nano- or microparticles with various sizes during polymerisation is discussed in terms of nucleation, agglomeration and adsorption of primary particles.  相似文献   

13.
The effect of polyethylene oxide (PEO) or polypropylene oxide (PPO) oligomers of various molecular weight (Mw) as well as of triblock copolymers, based on PEO and PPO blocks, on aqueous laponite RD suspensions was studied with small-angle neutron scattering (SANS). The radius of gyration (RG) increases for low M w whereas the opposite occurs for larger Mw. This behavior is explained on the basis that an effective R G is given by two contributions: (1) the size of the particles coated with the polymer and (2) the interactions between the laponite RD particles which are attractive for small and repulsive for large polymers. The SANS curves in the whole Q-range are well described by a model of noninteracting polydisperse core+shell disks, where the thickness of the polymer layer increases with the Mw. The adsorbed polymer is in a more compact conformation compared to a random coil distribution while the fraction of the polymer in the shell formed around the laponite RD particles is nearly independent of Mw. For increasing laponite RD amounts, at a given polymer composition, the thickness of the polymer slightly changes. In some cases, where also gelation is sped up, a structure factor with attractive interaction was employed which allowed to evaluate the attractive forces between the laponite RD particles. The gelation time was determined for mixtures at fixed copolymer and laponite RD concentrations. Surprisingly, it is observed that gels are formed despite the fact that the binding sites of the laponite RD particles are almost covered but the polymer size is too small to prevent aggregation. The gelation rate is correlated to structure and thermodynamics of these systems. Namely, when the balance between the steric forces and the depletion attractive forces undergoes an abrupt change the gelation time also undergoes a sharp variation. For lower and comparable Mw, PPO speeds up the gelation more efficiently than PEO while for higher Mw the gelation kinetics is slowed down again. Interestingly, copolymers of PEO and PPO blocks do not induce gelation in the time-window where the homopolymers do.  相似文献   

14.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

15.
The purposes of this study are to utilize the interactions between an adamantane end-capped poly(ethylene oxide) (PEO) and a cationic polymer of beta-cyclodextrin to build polymer bilayers on negatively charged surfaces, and to investigate the interactions between such layers. The association of this system in solution has been studied by rheology, light scattering, and fluorescence measurements. It was found that the adamantane-terminated PEO (PEO-Ad) mixed with the beta-cyclodextrin polymer gives complexes where the interpolymer links are formed by specific inclusion of the adamantane groups in the beta-cyclodextrin cavities. This results in a higher viscosity of the solution and growth of intermolecular clusters. The interactions between surfaces coated with a cationized beta-cyclodextrin polymer across a water solution containing PEO-Ad polymers were studied by employing the interferometric surface force apparatus (SFA). In the first step, the interaction between mica surfaces coated with the cationized beta-cyclodextrin polymer in pure water was investigated. It was found that the beta-cyclodextrin polymer adsorbs onto mica and almost neutralizes the surface charge. The adsorbed layers of the beta-cyclodextrin polymer are rather compact, with a layer thickness of about 60 A (30 A per surface). Upon separation, a very weak attractive force is observed. The beta-cyclodextrin solution was then diluted by pure water by a factor of 3000 and a PEO-Ad polymer was introduced into the solution. Two different architectures of the PEO-Ad polymer were investigated: a four-arm structure and a linear structure. After the adsorption of the PEO polymer onto the beta-cyclodextrin layer reached equilibrium, the forces were measured again. It was found that the weak repulsive long-range force had disappeared and an attractive force caused the surfaces to jump into contact, and that the compressed layer thickness had increased. The attractive force is interpreted as being due to a specific recognition between the hydrophobic adamantane groups on the PEO-Ad polymer and the hydrophobic cavity in the beta-cyclodextrin molecules. Furthermore, the attractive force observed on separation has increased significantly, which is a further indication of a specific interaction between the beta-cyclodextrin polymer and the adamantane groups.  相似文献   

16.
Dynamic light scattering has been used to determine the hydrodynamic thickness of poly(ethylene oxide) (PEO) adsorbed on synthetic anisotropic clay particles (Laponite) as a function of molecular weight. The layer thicknesses, and their increase with molecular weight, indicate that the conformation of the adsorbed layer is very compact and is much smaller than those normally observed for polymer adsorption on flat interfaces. The aggregation kinetics of the polymer coated particles in 5 mM NaCl was analyzed in a quantitative manner, revealing that the potential barrier to aggregation is strongly enhanced when polymer is present.  相似文献   

17.
Small-angle neutron scattering and mean-field lattice modeling were used to characterize a class of water-based magnetic fluids tailored specifically to extract soluble organic compounds from water. The fluids consist of a suspension of approximately 7 nm magnetite (Fe3O4) nanoparticles coated with a bifunctional polymer layer comprised of an outer hydrophilic poly(ethylene oxide) (PEO) region for colloidal stability and an inner hydrophobic poly(propylene oxide) (PPO) region for solubilization of organic compounds. The inner region of the polymer shell is increasingly depleted of water as the fraction of PPO side chains increases. The incorporation of PPO side chains also leads to a small increase in interparticle attraction. The lattice model predicted a shell structure similar to that of a PEO-PPO-PEO triblock copolymer (Pluronic) micelle, with equivalent levels of hydration but with more PEO present in the PPO-rich regions, as the side chains grafted to the surface are less able to segregate than when in free micellar systems.  相似文献   

18.
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles.  相似文献   

19.
A new category of crystalline polymer electrolyte prepared by the supramolecular self‐assembly of polyethylene oxide (PEO), α‐cyclodextrin (α‐CD), and LiAsF6 is reported. The polymer electrolyte consists of the nanochannels formed by α‐CDs in which the PEO/Li+ complexes are confined. The nanochannels formed by α‐CD provide the pathway for the directional motion of Li+ ions and at the same time prevent the access of the anions by size exclusion, resulting in good separation of the Li+ ions and the anions. The conductivity of the reported material is 30 times higher than that of the comparable PEO/Li+ complex crystal at room temperature. By using state‐of‐art solid‐state NMR spectroscopy, the structure and dynamics of the material were investigated in detail. The dynamics of the Li+ ions was studied and correlated to the ionic conductivity of the material.  相似文献   

20.
Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号