首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For fast and reliable screening, identification, and quantification of as many analytes as possible, multi-analyte approaches are very useful in clinical and forensic toxicology. Using ultra high performance liquid chromatography-tandem mass spectrometry, such an approach has been developed for blood plasma analysis after simple liquid–liquid extraction. In the present paper, validation and application is described for 31 neuroleptics, 28 benzodiazepines, and Z-drugs (zaleplone, zolpidem, and zopiclone). The validation parameters included recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes, selectivity, crosstalk, accuracy and precision, stabilities, and limits of quantification and detection. The results showed that the approach was selective, sensitive, accurate, and precise for 24 neuroleptics and 21 benzodiazepines and Z-drugs. The remaining analytes were unstable and/or too low dosed. Cost- and time-saving one-point calibration was applicable only for half of the analytes. The applicability was successfully shown for most of the drugs by analyzing authentic plasma samples and external quality control samples.  相似文献   

2.
A liquid chromatographic/mass spectrometric assay with atmospheric pressure chemical ionization (APCI-LC/MS) is presented for the fast and reliable screening and identification and for the precise and sensitive quantification of 15 neuroleptic (antipsychotic) drugs and three of their relevant metabolites in plasma. It allows confirmation of the diagnosis of a neuroleptic overdose and monitoring of psychiatric patients' compliance. The neuroleptics amisulpride, bromperidol, clozapine, droperidol, flupenthixol, fluphenazine, haloperidol, melperone, olanzapine, perazine, pimozide, risperidone, sulpiride, zotepine and zuclopenthixol and the pharmacologically active metabolites norclozapine, clozapine N-oxide and 9-hydroxyrisperidone were extracted from plasma using solid-phase extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. After screening and identification in the scan mode using the authors' new LC/MS library, the neuroleptics were quantified in the selected-ion mode. The quantification assay was fully validated. It was found to be selective and proved to be linear from sub-therapeutic to over therapeutic concentrations for all analytes. The corresponding reference levels are listed. The accuracy and precision data were within the required limits. The analytes were stable in frozen plasma for at least 1 month. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with various neuroleptics. The validated LC/MS assay has proved to be appropriate for the isolation, separation, screening, identification and quantification of various neuroleptics in plasma for clinical toxicology and therapeutic drug monitoring purposes.  相似文献   

3.
A high-performance liquid chromatography (LC)–tandem mass spectrometry (MS/MS) method has been developed and validated for the determination of 19 drugs of abuse and metabolites and used in whole blood. The following compounds were included: amphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethamphetamine, methamphetamine, cocaine, benzoylecgonine, morphine, 6-acetylmorphine, codeine, methadone, buprenorphine, norbuprenorphine, ketobemidone, tramadol, O-desmethyltramadol, zaleplone, zolpidem, and zopiclone. The sample pretreatment consisted of solid-phase extraction using mixed-mode columns (Isolute Confirm HCX). Deuterated analogues were used as internal standards for all analytes, except for ketobemidone and O-desmethyltramadol. The analytes were separated by a methanol/ammonium formate gradient using high-performance LC (Agilent HPLC 1100) with a 3 mm × 100 mm Varian Pursuit 3 C18 column, 3-μm particle size, and were quantified by MS/MS (Waters Quattro micro tandem quadrupole mass spectrometer) using multiple reaction monitoring in positive mode. Two transitions were used for all analytes, except for tramadol and O-desmethyltramadol. The run time of the method was 35 min including the equilibration time. For all analytes, responses were linear over the range investigated, with R 2 > 0.99. One-point calibration was found to be adequate by validation, thereby saving analysis of multiple calibrators. The limits of quantification (LOQs) for the analytes ranged from 0.0005 to 0.01 mg/kg. Absolute recoveries of the analytes were from 34 to 97%, except for zaleplone (6%). Both the interday precision and the intraday precision were less than 15% (20% at the LOQ) for all analytes, except buprenorphine, norburprenorphine, and zaleplone (less than 18%). Accuracy (bias) was within ±15% (±20% at the LOQ) for all analytes, except MDMA and O-desmethyltramadol (within ±19%). No ion suppression or enhancement was seen nor was suppression from coeluted analytes seen. Matrix effects were found to be less than 23% for all analytes, except zopiclone (64%). High-concentration and low-concentration quality control samples gave acceptable values, and the method has been tried in international proficiency test schemes with good results. The present LC-MS/MS method provides a simple, specific, and sensitive solution for the quantification of some of the most frequent drugs of abuse and their metabolites in whole blood. The quantification by LC-MS/MS was successfully applied to 412 forensic cases from October 2008 to mid February 2009, where 267 cases were related to zero-tolerance traffic legislation.  相似文献   

4.
For the first time, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-analyte approach based on a simple liquid–liquid extraction was developed and validated for fast target screening and quantification of benzodiazepines and Z-drugs in case of driving ability and crime responsibility in the three most important biosamples whole blood, plasma, and serum. Whole blood, plasma, and serum (500 μL each) were extracted twice at pH 7.4 and at pH 10 with ether/ethyl acetate (1:1). Separation, detection, and quantification were performed using LC-MS/MS with electrospray ionization in positive mode. The method was validated with respect to selectivity, ion suppression/enhancement of co-eluting analytes, matrix effects, recovery, process efficiency, accuracy and precision, stabilities, and limits of detection and quantification. For accuracy and precision, full calibration was performed with ranges from subtherapeutic to toxic concentrations. The presented LC-MS/MS approach as part of a universal multi-analyte concept for over 100 drugs was applicable for selective detection as well as accurate and precise quantification in whole blood, plasma, and serum. The approach was selective, sensitive, accurate, and precise for 16 of the 19 tested drugs in whole blood, 18 in plasma, and 17 in serum. Only semiquantitative results could be obtained for zopiclone because of its instability in all tested biosamples.  相似文献   

5.
Oxcarbazepine (OX), a new antiepileptic, may lead to unwanted side-effects or even life-threatening intoxications after overdose. Therefore, a validated liquid chromatographic/mass spectrometric (LC/MS) assay was developed for the quantification of OX and its pharmacologically active dihydro metabolite (dihydrooxcarbazepine, DOX, often named 10-hydroxycarbazepine). OX and DOX were extracted from plasma by the authors' standard liquid/liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. The compounds were quantified in the selected-ion monitoring mode using atmospheric pressure chemical ionization electrospray LC/MS. The assay was fully validated. It was found to be selective. The calibration curves were linear from 0.1 to 50 mg l(-1) for OX and DOX. Limits of quantification were 0.1 mg l(-1) for OX and DOX. The absolute recoveries were between 60 and 86%. The accuracy and precision data were within the required limits. The analytes in frozen plasma samples were stable for at least 1 month. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with OX. The measured therapeutic plasma levels ranged from 1 to 2 mg l(-1) for OX and from 10 to 40 mg l(-1) for DOX. The validated LC/MS assay proved to be appropriate for quantification of OX and DOX in plasma for clinical toxicology and therapeutic drug monitoring purposes. The assay is part of a general analysis procedure for the isolation, separation and quantification of various drugs and for their full-scan screening and identification.  相似文献   

6.
Fast gas chromatography/negative-ion chemical ionization mass spectrometric (GC/NICI-MS) assay combined with rapid and nonlaborious sample preparation is presented for the simultaneous determination of benzodiazepines and alpha-hydroxy metabolites, zaleplon and zopiclone in whole blood. The compounds were extracted from 100 microl of whole blood by simultaneous multitube, microscale liquid-liquid extraction (LLE) and derivatized by N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), without the need for the time-consuming concentration stage. In the analytical separation, various parameters of fast GC/NICI-MS were applied, e.g. the use of hydrogen as a GC carrier gas, a high carrier gas velocity, a small film thickness of the analytical column, fast MS data acquisition, fast temperature ramping, and high initial and final temperatures of GC column. Sensitive identification, screening and quantitation of 18 compounds of interest were achieved in chromatographic separation in only 4.40 min. Accurate and reproducible results were obtained by using five different and carefully selected deuterated analogues on the basis of the chemical properties of the target analytes. Nevertheless, for alpha-OH-midazolam, and for bromazepam and flunitrazepam at low concentrations, the results can be considered only semiquantitative on the basis of the validation data. The extraction efficiencies ranged from 74.3 to 105.7% and the limits of quantitation (LOQ) from 1 to 100 ng ml(-1). Rapid sample preparation and fast chromatographic separation allowed cost-efficient, reliable and high sample-throughput analyses with a low amount of manual work. The method was fully validated and accredited according to EN ISO/IEC 17025 standards and is applicable for sensitive, reliable and quantitative determination of benzodiazepines, zaleplon and zopiclone, e.g. in clinical and forensic toxicology.  相似文献   

7.
In the context of driving ability diagnostics in Germany, administrative cutoffs for various drugs and pharmaceuticals in urine have been established. Two liquid chromatography–tandem mass spectrometry methods for simultaneous detection and quantification of amphetamines, designer amphetamines, benzoylecgonine, benzodiazepines, opiates, and opioids in urine were developed and validated. A 500-μL aliquot of urine was diluted and fortified with an internal standard solution. After enzymatic cleavage, online extraction was performed by an ion-exchange/reversed-phase turbulent flow column. Separation was achieved by using a reversed-phase column and gradient elution. For detection, a Thermo Fisher TSQ Quantum Ultra Accurate Mass tandem mass spectrometer with positive electrospray ionization was used, and the analytes were measured in multiple-reaction monitoring mode detecting two transitions per precursor ion. The total run time for both methods was about 15 min. Validation was performed according to the guidelines of the Society of Toxicological and Forensic Chemistry. The results of matrix effect determination were between 78 % and 116 %. The limits of detection and quantification for all drugs, except zopiclone, were less than10?ng/mL and less than 25 ng/mL, respectively. Calibration curves ranged from 25 to 200 ng/mL for amphetamines, designer amphetamines, and benzoylecgonine, from 25 to 250 ng/mL for benzodiazepines, from 12.5 to 100 ng/mL for morphine, codeine, and dihydrocodeine, and from 5 to 50 ng/mL for buprenorphine and norbuprenorphine. Intraday and interday precision values were lower than 15 %, and bias values within?±?15 % were achieved. Turbulent flow chromatography needs no laborious sample preparation, so the workup is less time-consuming compared with gas chromatography–mass spectrometry methods. The methods are suitable for quantification of multiple analytes at the cutoff concentrations required for driving ability diagnostics in Germany.  相似文献   

8.
This paper reviews multi-analyte single-stage and tandem liquid chromatography–mass spectrometry (LC-MS) procedures using different mass analyzers (quadrupole, ion trap, time-of-flight) for screening, identification, and/or quantification of drugs, poisons, and/or their metabolites in blood, plasma, serum, or urine published after 2004. Basic information about the biosample assayed, work-up, LC column, mobile phase, ionization type, mass spectral detection mode, and validation data of each procedure is summarized in tables. The following analytes are covered: drugs of abuse, analgesics, opioids, sedative-hypnotics, benzodiazepines, antidepressants including selective-serotonin reuptake inhibitors (SSRIs), herbal phenalkylamines (ephedrines), oral antidiabetics, antiarrhythmics and other cardiovascular drugs, antiretroviral drugs, toxic alkaloids, quaternary ammonium drugs and herbicides, and dialkylphosphate pesticides. The pros and cons of the reviewed procedures are critically discussed, particularly, the need for studies on matrix effects, selectivity, analyte stability, and the use of stable-isotope labeled internal standards instead of unlabeled therapeutic drugs. In conclusion, LC-MS will probably become a gold standard for detection of very low concentrations particularly in alternative matrices and for quantification in clinical and forensic toxicology. However, some drawbacks still need to be addressed and finally overcome. Photos of LC-MS apparatus and typical samples suitable for toxicological analysis  相似文献   

9.
Tonon MA  Bonato PS 《Electrophoresis》2012,33(11):1606-1612
A capillary electrophoretic enantioselective method with UV detection was developed and validated for the simultaneous quantification of zopiclone enantiomers and its impurities, zopiclone-N-oxide enantiomers, and 2-amino-5-chloropyridine, in tablets. The analytes were extracted from the tablets using ACN and were separated in an uncoated fused-silica capillary (50 μm, 42 cm effective length, 50 cm total length) using 80 mM sodium phosphate buffer pH 2.5 and 5 mM carboxymethyl-β-cyclodextrin as running buffer. The analytes and the internal standard (trimethoprim) were detected at 305 and 200 nm, respectively. A voltage of 27 kV was applied and the capillary temperature was maintained at 25°C. All enantiomers were analyzed within 8 min and linear calibration curves over the concentration range of 0.4-0.8 mg mL?1 for each zopiclone enantiomer, 0.8-1.6 μg mL?1 for 2-amino-5-chloropyridine and 0.4-0.8 μg mL?1 for each zopiclone-N-oxide enantiomer were obtained. The coefficients of correlation obtained for the linear curves were greater than 0.99. The intra-day and inter-day accuracy and precision were lower than 2% for all analytes. This validated method was employed to study the degradation and racemization of zopiclone under stress conditions. This application demonstrated the importance of a stability-indicating assay method for this drug.  相似文献   

10.
A simple, reliable HPLC method using fluorescence detection (excitation 307 and emission 483 nm) was developed and validated for simultaneous quantitation of zopiclone and its metabolite desmethylzopiclone in human plasma. Following a single-step liquid-liquid extraction, the analytes and internal standard (zaleplon) were separated using an isocratic mobile phase on a reversed-phase C18 column. The lower limit of quantitation was 3 ng/mL for zopiclone and 6 ng/mL for desmethylzopiclone with a relative standard deviation of less than 5%. A linear dynamic range of 3-300 ng/mL for zopiclone and of 6-500 ng/mL for desmethylzopiclone was established. This HPLC method was validated with between-batch precision of 1.7-4.2% and 3.2-7.5% for zopiclone and desmethylzopiclone respectively. The between-batch accuracy was 99.4-111.5% and 101.6-104.8% for zopiclone and desmethylzopiclone, respectively. Frequently coadministered drugs did not interfere with the described methodology. Stability of zopiclone and desmethylzopiclone in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days' storage in a freezer. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

11.
Multi-analyte procedures are of great interest in clinical and forensic toxicology making the analytical process much simpler, faster, and cheaper and allow monitoring of analytes of different drug classes in one single body sample. The aim of the present study was to validate an ultra high performance liquid chromatographic-tandem mass spectrometric approach for fast target screening and quantification of 34 antidepressants in plasma after simple liquid–liquid extraction as part of a multi-analyte procedure for over 130 drugs. The validation process including recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes (already published), selectivity, cross talk, accuracy and precision, stabilities, and limits of quantification and detection showed that the approach was selective, sensitive, accurate, and precise for 28 of the 34 tested drugs. The applicability was successfully tested by analyzing authentic plasma samples and external quality control samples. Furthermore, it could be shown that time- and cost-saving one-point calibration was applicable for 21 drugs for daily routine and especially in emergency cases.  相似文献   

12.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated for simultaneous quantification of olanzapine, clozapine, ziprasidone, haloperidol, risperidone, and its active metabolite 9-hydroxyrisperidone, in rat plasma using midazolam as internal standard (IS). The analytes were extracted from rat plasma using a single step liquid-liquid extraction technique. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) with gradient elution. All of the analytes were detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 0.1 ng/mL and correlation coefficient (R(2)) values for the linear range of 0.1-100 ng/mL were 0.997 or greater for all the analytes. The intra-day and inter-day precision and accuracy were better than 8.05%. The relative and absolute recovery was above 77% and matrix effects were low for all the analytes except for ziprasidone. This validated method has been successfully used to quantify the plasma concentration of the analytes after chronic treatment with antipsychotic drugs.  相似文献   

13.
An analytical procedure was developed for the simultaneous sensitive identification, screening and quantitation of 30 drugs of abuse using 250 microl of human oral fluid. The method employs sequential mixed-mode solid-phase extraction (SPE), optimized derivative formation and long-column fast gas chromatography/electron impact mass spectrometry (GC/EI-MS). After sequential SPE elution, the most sensitive and stable derivatives were formed by taking careful account of the characteristics of the active functional groups and possible steric hindrances affecting derivatization chemistry. Amphetamine-type stimulant drugs were acylated with heptafluorobutyric anhydride, benzodiazepines and Delta(9)-tetrahydrocannabinol were silylated with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide and benzoylecgonine, codeine, ethylmorphine, 6-monoacetylmorphine, morphine, pholcodine, buprenorphine and norbuprenorphine with N-methyl-N-(trimethylsilyl)trifluoroacetamide. In addition, the following analytes were included: methadone, cocaine, alprazolam, midazolam, fentanyl and zolpidem. In GC separation, fast temperature ramping and high carrier gas flow-rate combined with long 30 m columns of i.d. 0.32 mm offered a reduction in analysis time and sharp peak shapes while still maintaining sufficient resolution and high sample capacity. Validated parameters including selectivity, linearity, accuracy, intra- and inter-day precision, extraction efficiency and limit of quantitation were all within required limits. In contrast to previously published methods, this single procedure is suitable for the simultaneous toxicological determination of the most common illicit drugs and benzodiazepines, and also zolpidem, in a small amount of oral fluid.  相似文献   

14.
This method describes the simultaneous separation, identification, quantification and confirmation of betamethasone (BTM) and dexamethasone (DXM) in equine plasma by liquid chromatography (LC) integrated with multidimensional tandem mass spectrometry. Analytes were directly extracted from equine plasma by methyl tert-butyl ether (MTBE). The residues were reconstituted with sample solvent. LC separation of the analytes was performed on a Hypercarb column using acetonitrile/water/formic acid (95:5:0.5, v/v/v) as the mobile phase. Sample screening, quantification and confirmation were performed in multiple reaction monitoring (MRM) mode. The method was linear over the concentration range of 0.1-75 ng/mL for both analytes. Limit of detection (LOD) was 50 pg/mL and that of quantification (LOQ) was 100 pg/mL for both analytes. The limit of confirmation (LOC) for the presence of BTM or DXM by MRM was 0.5 ng/mL. The intra-and inter-day precisions expressed as coefficient of variation (CV) for quantification of DXM and BTM from 0.1 to 50 ng/mL were less than 7% and the accuracy was in the range of 97-105%. This method is capable of distinguishing BTM from DXM when both analytes are simultaneously present in equine plasma. Measurement uncertainty for both analytes was estimated at less than 16%. The method is rapid, specific, selective, sensitive, simple and reliable. The importance of this method is its usefulness in directly identifying and differentiating BTM from DXM without derivatization.  相似文献   

15.
A simple, short, and rugged LC–MS/MS method for the simultaneous determination of tenofovir, emtricitabine, elvitegravir and rilpivirine was developed and validated. Dried blood spots were prepared with 25 μL of spiked whole blood. A 3 mm punch was extracted with methanol containing labeled internal standards. Ten microliters was injected into the LC–MS/MS using isocratic mobile phase composed of 0.1% formic acid in water and 0.1% formic acid in acetonitrile (45: 55 v/v) at a flow rate of 0.25 mL/min. The method was validated in the range of 10–2000 ng/mL for all four analytes. The intra‐assay accuracy (RE) of the method was −4.73–4.78, 1.35–2.89, −8.89 to −0.49 and − 1.40–1.81 for tenofovir, emtricitabine, elvitegravir and rilpivirine, respectively. The inter‐assay accuracy was within ±15% of nominal and precision (CV) was <15%. The hematocrit effect on quantification was nonsignificant at the tested hematocrit levels (35–70%). The dried blood spot method showed good agreement with the plasma method, and hence can be used as an alternative to plasma method.  相似文献   

16.
A fast and simple approach to overcome challenges in emergency toxicological analysis, using ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC‐MS/MS) has been developed, for the detection of analytes in blood and urine samples from the following drug classes: analgesics, benzodiazepines, antidepressants, anticonvulsants, drugs of abuse, and pesticides. These substances are relevant in the context of emergency toxicology in Brazil. The sample preparation procedure was relatively easy and fast to perform. The method was fully validated giving limits of in the range of 0.5 and 20 ng mL?1 for blood and urine samples. The intraday and interday precision and accuracy were considered adequate for all analytes once the relative standard deviation (RSD) (%) was lower than 20% for quality control (QC) low and lower than 15% for CQ medium and high. The developed method was successfully applied to 320 real samples collected at the Poison Control Center of São Paulo, and 89.1% have shown to be positive for some of the analytes. This confirms its applicability and importance to emergency toxicological analysis, and it could be very useful in both fields of clinical and forensic toxicology.  相似文献   

17.
An on-line immunoextraction and liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol in rat plasma. Sample preparation involved immunoextraction of analytes using an antibody raised against R,R'- and R,S'-aminofenoterol that was immobilized onto chromatographic support. LC was performed on a Waters hydrophilic interaction chromatography (HILIC) column (150 mm x 2.1mm), using an isocratic mobile phase of methanol:ammonium acetate (10mM, pH 6.8) (90:10, v/v) at a flow rate of 0.2 ml/min. The MS was operated in the single ion monitoring mode (m/z 304.2 for R,R'-fenoterol, m/z 318.1 for R,R'-methoxyfenoterol, and m/z 339.2 for R,S'-naphthylfenoterol). Optimization of analytes desorption process from the immunoextraction column was performed by factorial analysis and the sample calibration curves were made with spiked rat plasma samples containing 0.5-100 ng/ml of drugs. The cross-selectivity studies of the antibody were determined and the results suggested high selectivities toward R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol. The accuracy of assay was more than 96% while intra- and inter-day precision of assay were less than 12.4%. Stability studies (2h benchtop, freeze/thaw, and autosampler stability) were conducted and the analytes were stable through out studies. The validated method was used to determine the plasma concentration-time profiles of drugs after oral administration to rats of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol.  相似文献   

18.
Two fast and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based bioanalytical assays were developed and validated to quantify the active and three inactive metabolites of prasugrel. Prasugrel is a novel thienopyridine prodrug that is metabolized to the pharmacologically active metabolite in addition to three inactive metabolites, which directly relate to the formation and elimination of the active metabolite. After extraction and separation, the analytes were detected and quantified using a triple quadrupole mass spectrometer using positive electrospray ionization. The validated concentration range for the inactive metabolites assay was from 1 to 500 ng/mL for each of the three analytes. Additionally, a 5x dilution factor was validated. The interday accuracy ranged from -10.5% to 12.5% and the precision ranged from 2.4% to 6.6% for all three analytes. All results showed accuracy and precision within +/-20% at the lower limit of quantification and +/-15% at other levels. The validated concentration range for the active metabolite assay was from 0.5 to 250 ng/mL. Additionally, a 10x dilution factor was validated. The interbatch accuracy ranged from -7.00% to 5.98%, while the precision ranged from 0.98% to 3.39%. Derivatization of the active metabolite in blood with 2-bromo-3'-methoxyacetophenone immediately after collection was essential to ensure the stability of the metabolite during sample processing and storage. These methods have been applied to determine the concentrations of the active and inactive metabolites of prasugrel in human plasma.  相似文献   

19.
A method with parallel extraction columns and parallel analytical columns (PEC-PAC) for on-line high-flow liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for simultaneous quantification of a drug candidate and its six metabolites in dog plasma. Two on-line extraction columns were used in parallel for sample extraction and two analytical columns were used in parallel for separation and analysis. The plasma samples, after addition of an internal standard solution, were directly injected onto the PEC-PAC system for purification and analysis. This method allowed the use of one of the extraction columns for analyte purification while the other was being equilibrated. Similarly, one of the analytical columns was employed to separate the analytes while the other was undergoing equilibration. Therefore, the time needed for re-conditioning both extraction and analytical columns was not added to the total analysis time, which resulted in a shorter run time and higher throughput. Moreover, the on-line column extraction LC/MS/MS method made it possible to extract and analyze all seven analytes simultaneously with good precision and accuracy despite their chemical class diversity that included primary, secondary and tertiary amines, an alcohol, an aldehyde and a carboxylic acid. The method was validated with the standard curve ranging from 5.00 to 5000 ng/mL. The intra- and inter-day precision was no more than 8% CV and the assay accuracy was between 95 and 107%.  相似文献   

20.
Hyphenated mass spectrometric techniques, particularly gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), are indispensable tools in clinical and forensic toxicology and in doping control owing to their high sensitivity and specificity. They are used for screening, library-assisted identification and quantification of drugs, poisons and their metabolites, prerequisites for competent expertise in these fields. In addition, they allow the study of metabolism of new drugs or poisons as a basis for developing screening procedures in biological matrices, most notably in urine, or toxicological risk assessment. Concepts and procedures using GC/MS and LC/MS techniques in the areas of analytical toxicology and the role of mass spectral libraries are presented and discussed in this feature article. Finally, perspectives of their future position are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号