首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
Classical and modified Lagrangian bounds for the optimal value of optimization problems with a double decomposable structure are examined. For the class of generalized assignment problems, this property of constraints is used to design a Benders algorithm for solving the modified dual problem. Numerical results are presented that compare the quality of classical and modified bounds.  相似文献   

2.
Many polynomial and discrete optimization problems can be reduced to multiextremal quadratic type models of nonlinear programming. For solving these problems one may use Lagrangian bounds in combination with branch and bound techniques. The Lagrangian bounds may be improved for some important examples by adding in a model the so-called superfluous quadratic constraints which modify Lagrangian bounds. Problems of finding Lagrangian bounds as a rule can be reduced to minimization of nonsmooth convex functions and may be successively solved by modern methods of nondifferentiable optimization. This approach is illustrated by examples of solving polynomial-type problems and some discrete optimization problems on graphs.  相似文献   

3.
基于一个含有控制参数的修正Lagrangian函数,该文建立了一个求解非线性约束优化问题的修正Lagrangian算法.在一些适当的条件下,证明了控制参数存在一个阀值,当控制参数小于这一阀值时,由这一算法产生的序列解局部收敛于问题的Kuhn-Tucker点,并且建立了解的误差上界.最后给出一些约束优化问题的数值结果.  相似文献   

4.
《Optimization》2012,61(5):627-641
We study lower bounding methods for indefinite integer quadratic programming problems. We first construct convex relaxations by D.C. (difference of convex functions) decomposition and linear underestimation. Lagrangian bounds are then derived by applying dual decomposition schemes to separable relaxations. Relationships between the convex relaxation and Lagrangian dual are established. Finally, we prove that the lower bound provided by the convex relaxation coincides with the Lagrangian bound of the orthogonally transformed problem.  相似文献   

5.
In the partial accessibility constrained vehicle routing problem, a route can be covered by two types of vehicles, i.e. truck or truck + trailer. Some customers are accessible by both vehicle types, whereas others solely by trucks. After introducing an integer programming formulation for the problem, we describe a two-phase heuristic method which extends a classical vehicle routing algorithm. Since it is necessary to solve a combinatorial problem that has some similarities with the generalized assignment problem, we propose an enumerative procedure in which bounds are obtained from a Lagrangian relaxation. The routine provides very encouraging results on a set of test problems.  相似文献   

6.
The two-machine flowshop environment with sequence-independent setup times has been intensely investigated both from theoretical and practical perspectives in the scheduling literature. Nevertheless, very scant attention has been devoted to deriving effective lower bounding strategies. In this paper, we propose new lower bounds for the total completion time minimization criterion. These bounds are based on three relaxation schemes, namely the waiting time-based relaxation scheme, the single machine-based relaxation scheme, and the Lagrangian relaxation scheme. Extensive computational study carried on instances with up to 500 jobs reveals that embedding the waiting time-based bounding strategy within the Lagrangian relaxation framework yields the best performance while requiring negligible CPU time.  相似文献   

7.
A branch and bound algorithm is proposed for solving integer separable concave problems. The method uses Lagrangian duality to obtain lower and upper bounds. We show that the dual program of a separable concave problem is a linear program. Moreover, we identify an excellent candidate to test on each region of the branch and we show an optimality sufficient condition for this candidate. Preliminary computational results are reported.  相似文献   

8.
本文对用无约束极小化方法求解等式约束非线性规划问题的Hestenes-Powell 增广拉格朗日函数作了进一步研究.在适当的条件下,我们建立了Hestenes-Powell增广拉格朗日函数在原问题变量空间上的无约束极小与原约束问题的解之间的关系,并且也给出了Hestenes-Powell增广拉格朗日函数在原问题变量和乘子变量的积空间上的无约束极小与原约束问题的解之间的一个关系.因此,从理论的观点来看,原约束问题的解和对应的拉格朗日乘子值不仅可以用众所周知的乘子法求得,而且可以通过对Hestenes-Powell 增广拉格朗日函数在原问题变量和乘子变量的积空间上执行一个单一的无约束极小化来获得.  相似文献   

9.
离散单因素投资组合模型的对偶算法   总被引:1,自引:0,他引:1  
本文研究金融优化中的离散单因素投资组合问题,该问题与传统投资组合模型的不同之处是决策变量为整数(交易手数),从而导致要求解一个二次整数规划问题.针对该模型的可分离性结构,我们提出了一种基于拉格朗日对偶和连续松弛的分枝定界算法。我们分别用美国股票市场的交易数据和随机产生的数据对算法进行了测试.数值结果表明该算法是有效的,可以求解多达150个风险证券的离散投资组合问题.  相似文献   

10.
A novel smooth nonlinear augmented Lagrangian for solving minimax problems with inequality constraints, is proposed in this paper, which has the positive properties that the classical Lagrangian and the penalty function fail to possess. The corresponding algorithm mainly consists of minimizing the nonlinear augmented Lagrangian function and updating the Lagrange multipliers and controlling parameter. It is demonstrated that the algorithm converges Q-superlinearly when the controlling parameter is less than a threshold under the mild conditions. Furthermore, the condition number of the Hessian of the nonlinear augmented Lagrangian function is studied, which is very important for the efficiency of the algorithm. The theoretical results are validated further by the preliminary numerical experiments for several testing problems reported at last, which show that the nonlinear augmented Lagrangian is promising.  相似文献   

11.
本文提出了一个求不定二次规划问题全局最优解的新算法.首先,给出了三种计算下界的方法:线性逼近法、凸松弛法和拉格朗日松弛法;并且证明了拉格朗日对偶界与通过凸松弛得到的下界是相等的;然后建立了基于拉格朗日对偶界和矩形两分法的分枝定界算法,并给出了初步的数值试验结果.  相似文献   

12.
Mangasarian and Solodov (Ref. 1) proposed to solve nonlinear complementarity problems by seeking the unconstrained global minima of a new merit function, which they called implicit Lagrangian. A crucial point in such an approach is to determine conditions which guarantee that every unconstrained stationary point of the implicit Lagrangian is a global solution, since standard unconstrained minimization techniques are only able to locate stationary points. Some authors partially answered this question by giving sufficient conditions which guarantee this key property. In this paper, we settle the issue by giving a necessary and sufficient condition for a stationary point of the implicit Lagrangian to be a global solution and, hence, a solution of the nonlinear complementarity problem. We show that this new condition easily allows us to recover all previous results and to establish new sufficient conditions. We then consider a constrained reformulation based on the implicit Lagrangian in which nonnegative constraints on the variables are added to the original unconstrained reformulation. This is motivated by the fact that often, in applications, the function which defines the complementarity problem is defined only on the nonnegative orthant. We consider the KKT-points of this new reformulation and show that the same necessary and sufficient condition which guarantees, in the unconstrained case, that every unconstrained stationary point is a global solution, also guarantees that every KKT-point of the new problem is a global solution.  相似文献   

13.
We investigate whether some merit functions for variational inequality problems (VIP) provide error bounds for the underlying VIP. Under the condition that the involved mapping F is strongly monotone, but not necessarily Lipschitz continuous, we prove that the so-called regularized gap function provides an error bound for the underlying VIP. We give also an example showing that the so-called D-gap function might not provide error bounds for a strongly monotone VIP.This research was supported by United College and by a direct grant of the Chinese University of Hong Kong. The authors thank the referees for helpful comments and suggestions.  相似文献   

14.
Whereas CP methods are strong with respect to the detection of local infeasibilities, OR approaches have powerful optimization abilities that ground on tight global bounds on the objective. An integration of propagation ideas from CP and Lagrangian relaxation techniques from OR combines the merits of both approaches. We introduce a general way of how linear optimization constraints can strengthen their propagation abilities via Lagrangian relaxation. The method is evaluated on a set of benchmark problems stemming from a multimedia application. The experiments show the superiority of the combined method compared with a pure OR approach and an algorithm based on two independent optimization constraints.  相似文献   

15.
In this article, we present and validate a simplicial branch and bound duality-bounds algorithm for globally solving the linear sum-of-ratios fractional program. The algorithm computes the lower bounds called for during the branch and bound search by solving ordinary linear programming problems. These problems are derived by using Lagrangian duality theory. The algorithm applies to a wide class of linear sum-of-ratios fractional programs. Two sample problems are solved, and the potential practical and computational advantages of the algorithm are indicated.  相似文献   

16.
Convex relaxations can be used to obtain lower bounds on the optimal objective function value of nonconvex quadratically constrained quadratic programs. However, for some problems, significantly better bounds can be obtained by minimizing the restricted Lagrangian function for a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm compares favorably to the Reformulation–Linearization Technique for problems with a favorable structure.  相似文献   

17.
We design a fast ascent direction algorithm for the Lagrangian dual problem of the single-machine scheduling problem of minimizing total weighted completion time subject to precedence constraints. We show that designing such an algorithm is relatively simple if a scheduling problem is formulated in terms of the job completion times rather than as an 0–1 linear program. Also, we show that upon termination of such an ascent direction algorithm we get a dual decomposition of the original problem, which can be exploited to develop approximative and enumerative approaches for it. Computational results exhibit that in our application the ascent direction leads to good Lagrangian lower and upper bounds.  相似文献   

18.
Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem. This work was partially supported by the Fonds National Suisse de la Recherche Scientifique, grant 12-57093.99 and the Spanish government, MCYT subsidy dpi2002-03330.  相似文献   

19.
In this paper, we introduce an augmented Lagrangian function for a multiobjective optimization problem with an extended vector-valued function. On the basis of this augmented Lagrangian, set-valued dual maps and dual optimization problems are constructed. Weak and strong duality results are obtained. Necessary and sufficient conditions for uniformly exact penalization and exact penalization are established. Finally, comparisons of saddle-point properties are made between a class of augmented Lagrangian functions and nonlinear Lagrangian functions for a constrained multiobjective optimization problem.  相似文献   

20.
Lagrangian dual approaches have been employed successfully in a number of integer programming situations to provide bounds for branch-and-bound procedures. This paper investigates some relationship between bounds obtained from lagrangian duals and those derived from the lesser known, but theoretically more powerful surrogate duals. A generalization of Geoffrion's integrality property, some complementary slackness relationships between optimal solutions, and some empirical results are presented and used to argue for the relative value of surrogate duals in integer programming. These and other results are then shown to lead naturally to a two-phase algorithm which optimizes first the computationally easier lagrangian dual and then the surrogate dual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号