首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain the first example of an infinite series of finite simple groups that are uniquely determined by their prime graph in the class of all finite groups. We also show that there exist almost simple groups for which the number of finite groups with the same prime graph is equal to 2. Supported by RFBR grant No. 05-01-00797, and by SB RAS Young Researchers Support grant No. 29 and Integration project No. 2006.1.2. __________ Translated from Algebra i Logika, Vol. 45, No. 4, pp. 390–408, July–August, 2006.  相似文献   

2.
Spectra of finite linear and unitary groups   总被引:1,自引:0,他引:1  
The spectrum of a finite group is the set of its element orders. An arithmetic criterion determining whether a given natural number belongs to a spectrum of a given group is furnished for all finite special, projective general, and projective special linear and unitary groups. Supported by RFBR (grant Nos. 08-01-00322 and 06-01-39001) and by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (project NSh-344.2008.1). __________ Translated from Algebra i Logika, Vol. 47, No. 2, pp. 157–173, March–April, 2008.  相似文献   

3.
Two groups are said to be isospectral if they share the same set of element orders. For every finite simple linear group L of dimension n over an arbitrary field of characteristic 2, we prove that any finite group G isospectral to L is isomorphic to an automorphic extension of L. An explicit formula is derived for the number of isomorphism classes of finite groups that are isospectral to L. This account is a continuation of the second author's previous paper where a similar result was established for finite simple linear groups L in a sufficiently large dimension (n > 26), and so here we confine ourselves to groups of dimension at most 26. Supported by RFBR (project Nos. 08-01-00322 and 06-01-39001), by SB RAS (Integration Project No. 2006.1.2), and by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (grant NSh-344.2008.1) and Young Doctors and Candidates of Science (grants MD-2848.2007.1 and MK-377.2008.1). Translated from Algebra i Logika, Vol. 47, No. 5, pp. 558–570, September–October, 2008.  相似文献   

4.
The maximal independent sets of the soluble graph of a finite simple group G are studied and their independence number is determined. In particular, it is shown that this graph in many cases has an independent set with three vertices.  相似文献   

5.
Let G be a finite group. We define the prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. Recently M. Hagie [5] determined finite groups G satisfying Γ(G) = Γ(S), where S is a sporadic simple group. Let p > 3 be a prime number. In this paper we determine finite groups G such that Γ(G) = Γ(PSL(2, p)). As a consequence of our results we prove that if p > 11 is a prime number and p ≢ 1 (mod 12), then PSL(2, p) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph. The third author was supported in part by a grant from IPM (No. 84200024).  相似文献   

6.
7.
In the paper we work to complete the classification of Carter subgroups in finite almost simple groups. In particular, it is proved that Carter subgroups of every finite almost simple group are conjugate. Based on our previous results, together with those obtained by F. Dalla Volta, A. Lucchini, and M. C. Tamburini, as a consequence we derive that Carter subgroups of every finite group are conjugate. Supported by RFBR grant No. 05-01-00797; by the Council for Grants (under RF President) for Support of Young Russian Scientists via projects MK-1455.2005.1 and MK-3036.2007.1; by SB RAS Young Researchers Support grant No. 29; via Integration Project No. 2006.1.2. __________ Translated from Algebra i Logika, Vol. 46, No. 2, pp. 157–216, March–April, 2007.  相似文献   

8.
It is proved that if L is one of the simple groups 3D4(q) or F4(q), where q is odd, and G is a finite group with the set of element orders as in L, then the derived subgroup of G/F(G) is isomorphic to L and the factor group G/G′ is a cyclic {2, 3}-group. __________ Translated from Algebra i Logika, Vol. 44, No. 5, pp. 517–539, September–October, 2005. Supported by RFBR grant No. 04-01-00463.  相似文献   

9.
An exhaustive solution is given to the recognition-by-spectrum problem for finite, simple, three-dimensional unitary groups. For every such group, the number of non-isomorphic, finite, isospectral groups is determined. In particular, a new counterexample to Problem 13.63 in the Kourovka Notebook is furnished. Supported by RFBR grant No. 05-01-00797, and by SB RAS Young Researchers Support grant No. 29 and Integration Project No. 2006.1.2. __________ Translated from Algebra i Logika, Vol. 45, No. 2, pp. 185–202, March–April, 2006.  相似文献   

10.
Maximal tori of all finite simple classical groups, as well as of special and general projective linear and unitary groups, are treated. For every such torus, its expression as a direct sum of cyclic groups is obtained in an explicit form. Supported by RFBR grant Nos. 05-01-00797 and 06-01-39001, and by SB RAS Integration Project No. 2006.1.2. __________ Translated from Algebra i Logika, Vol. 46, No. 2, pp. 129–156, March–April, 2007.  相似文献   

11.
A finite group G is said to be recognizable by spectrum, i.e., by the set of element orders, if every finite group H having the same spectrum as G is isomorphic to G. We prove that the simple linear groups L n (2k) are recognizable by spectrum for n = 2m ≥ 32.Original Russian Text Copyright © 2005 Vasil’ev A. V. and Grechkoseeva M. A.The authors were supported by the Russian Foundation for Basic Research (Grant 05-01-00797), the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-2069.2003.1), the Program “ Development of the Scientific Potential of Higher School” of the Ministry for Education of the Russian Federation (Grant 8294), the Program “Universities of Russia” (Grant UR.04.01.202), and a grant of the Presidium of the Siberian Branch of the Russian Academy of Sciences (No. 86-197).__________Translated from Sibirskii Matematicheskii Zhurnal, Vol. 46, No. 4, pp. 749–758, July–August, 2005.  相似文献   

12.
It is proved that finite simple groups L4(2m), m ⩾ 2, and U4(2m), m ⩾ 2, are, up to isomorphism, recognized by spectra, i.e., sets of their element orders, in the class of finite groups. As a consequence the question on recognizability by spectrum is settled for all finite simple groups without elements of order 8. Supported by RFBR (grant Nos. 05-01-00797 and 06-01-39001), by SB RAS (Complex Integration project No. 1.2), and by the Ministry of Education of China (Project for Retaining Foreign Expert). Supported by NSF of Chongqing (CSTC: 2005BB8096). __________ Translated from Algebra i Logika, Vol. 47, No. 1, pp. 83–93, January–February, 2008.  相似文献   

13.
Let G be a group. A subset X of G is called an A-subset if X consists of elements of order 3, X is invariant in G, and every two non-commuting members of X generate a subgroup isomorphic to A4 or to A5. Let X be the A-subset of G. Define a non-oriented graph Γ(X) with vertex set X in which two vertices are adjacent iff they generate a subgroup isomorphic to A4. Theorem 1 states the following. Let X be a non-empty A-subset of G. (1) Suppose that C is a connected component of Γ(X) and H = 〈C〉. If H ∩ X does not contain a pair of elements generating a subgroup isomorphic to A5 then H contains a normal elementary Abelian 2-subgroup of index 3 and a subgroup of order 3 which coincides with its centralizer in H. In the opposite case, H is isomorphic to the alternating group A(I) for some (possibly infinite) set I, |I| ≥ 5. (2) The subgroup 〈XG〉 is a direct product of subgroups 〈C α〉-generated by some connected components C α of Γ(X). Theorem 2 asserts the following. Let G be a group and XG be a non-empty G-invariant set of elements of order 5 such that every two non-commuting members of X generate a subgroup isomorphic to A5. Then 〈XG〉 is a direct product of groups each of which either is isomorphic to A5 or is cyclic of order 5. Supported by RFBR grant No. 05-01-00797; FP “Universities of Russia,” grant No. UR.04.01.028; RF Ministry of Education Developmental Program for Scientific Potential of the Higher School of Learning, project No. 511; Council for Grants (under RF President) and State Aid of Fundamental Science Schools, project NSh-2069.2003.1. __________ Translated from Algebra i Logika, Vol. 45, No. 2, pp. 203–214, March–April, 2006.  相似文献   

14.
It is shown that the condition of nonadjacency of 2 and at least one odd prime in the Gruenberg-Kegel graph of a finite group G under some natural additional conditions suffices to describe the structure of G; in particular, to prove that G has a unique nonabelian composition factor. Applications of this result to the problem of recognition of finite groups by spectrum are also considered.Original Russian Text Copyright © 2005 Vasilev A. V.The author was supported by the Russian Foundation for Basic Research (Grant 05-01-00797), the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-2069.2003.1), the Program Development of the Scientific Potential of Higher School of the Ministry for Education of the Russian Federation (Grant 8294), the Program Universities of Russia (Grant UR.04.01.202), and a grant of the Presidium of the Siberian Branch of the Russian Academy of Sciences (No. 86-197).__________Translated from Sibirskii Matematicheskii Zhurnal, Vol. 46, No. 3, pp. 511–522, May–June, 2005.  相似文献   

15.
Finite groups of Lie type form the greater part of known finite simple groups. An important class of subgroups of finite groups of Lie type are so-called reductive subgroups of maximal rank. These arise naturally as Levi factors of parabolic groups and as centralizers of semisimple elements, and also as subgroups with maximal tori. Moreover, reductive groups of maximal rank play an important part in inductive studies of subgroup structure of finite groups of Lie type. Yet a number of vital questions dealing in the internal structure of such subgroups are still not settled. In particular, we know which quasisimple groups may appear as central multipliers in the semisimple part of any reductive group of maximal rank, but we do not know how normalizers of those quasisimple groups are structured. The present paper is devoted to tackling this problem. Supported by RFBR (grant No. 05-01-00797) and by SB RAS (Young Researchers Support grant No. 29 and Integration project No. 2006.1.2). __________ Translated from Algebra i Logika, Vol. 47, No. 1, pp. 3–30, January–February, 2008.  相似文献   

16.
We point out a countable set of pairwise nonisomorphic Cayley graphs of the group ℤ4 that are limit for finite minimal vertex-primitive graphs admitting a vertex-primitive automorphism group containing a regular Abelian normal subgroup. Supported by RFBR grant No. 06-01-00378. __________ Translated from Algebra i Logika, Vol. 47, No. 2, pp. 203–214, March–April, 2008.  相似文献   

17.
The spectrum of a finite group is the set of its element orders. We prove a theorem on the structure of a finite group whose spectrum is equal to the spectrum of a finite nonabelian simple group. The theorem can be applied to solving the problem of recognizability of finite simple groups by spectrum.  相似文献   

18.
We prove that if L is one of the simple groups E 6(q) and 2 E 6(q) and G is some finite group with the same spectrum as L, then the commutant of G/F(G) is isomorphic to L and the quotient G/G′ is a cyclic {2,3}-group. Original Russian Text Copyright ? 2007 Kondrat’ev A. S. The author was supported by the Russian Foundation for Basic Research (Grant 04-01-00463) and the RFBR-NSFC (Grant 05-01-39000). __________ Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 48, No. 6, pp. 1250–1271, November–December, 2007.  相似文献   

19.
It is proved that if G is a finite group with an element order set as in the simple group 3D4(q), where q is even, then the commutant of G/F(G) is isomorphic to 3D4(q) and the factor group G/G′ is a cyclic {2, 3}-group. __________ Translated from Algebra i Logika, Vol. 45, No. 1, pp. 3–19, January–February, 2006.  相似文献   

20.
A graph is called a semi-regular graph if its automorphism group action on its ordered pair of adjacent vertices is semi-regular. In this paper, a necessary and sufficient condition for an automorphism of the graph F to be an automorphism of a map with the underlying graph F is obtained. Using this result, all orientation-preserving automorphisms of maps on surfaces (orientable and non-orientable) or just orientable surfaces with a given underlying semi-regular graph F are determined. Formulas for the numbers of non-equivalent embeddings of this kind of graphs on surfaces (orientable, non-orientable or both) are established, and especially, the non-equivalent embeddings of circulant graphs of a prime order on orientable, non-orientable and general surfaces are enumerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号