首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of p-benzoquinone and ammonia was investigated. The high molecular weight GPC peaks of both graft polymers and homopolymers decreased with increasing p-benzoquinone concentration, while the low molecular weight peaks of both graft copolymers and homopolymers decreased with increasing ammonia concentration. The results indicate that the high molecular weight peaks of both graft and homopolymers are formed as a result of a radical mechanism and that the low molecular weight peaks of both types of polymers are formed by a cationic mechanism. In formation of both graft polymers and homopolymers both radical and cationic polymerization take place at the same time.  相似文献   

2.
Preirradiation polymerization of the styrene–silica gel system was studied in detail. Both graft polymers and homopolymers have bimodal GPC spectra. High molecular weight peaks were formed in a radical mechanism and the low molecular weight peaks were formed in a cationic mechanism as same as those in the simultaneous irradiation polymerization. The rate of formation of the low molecular weight peaks was very high compared with that of the high molecular weight peaks. Monomer conversion and percent grafting leveled off at about 1–2 Mrad. Radiation dose dependence of the four peaks were different from each other. Monomer conversion and percent grafting decreased as the preheating temperature of silica gel increased. The amount of the low molecular weight peaks of graft polymers depended on the number of silanol groups, as in the case of the simultaneous irradiation polymerization. A reaction mechanism for the preirradiation polymerization is proposed based on the results obtained.  相似文献   

3.
To elucidate the reaction mechanism of radiation-induced polymerization of methyl methacrylate adsorbed on silica gel, the temperature dependence and effects of acetone and pyridine were investigated. It was found that even at ?78°C the polymerization rate was quite fast. The amounts of high molecular weight GPC peaks of both graft polymers and homopolymers increased with increasing irradiation temperature. The activation energy of the adsorbed state polymerization was low compared with that of bulk polymerization. The low molecular weight peaks of homopolymers decreased with acetone addition but were almost unaffected by pyridine. The low molecular weight peaks of homopolymers were thus polymerized by an anionic mechanism. In the methyl methacrylate–silica gel system both radical and anionic polymerization take place at the same time in formation of graft polymers and homopolymers. A reaction mechanism for the methyl methacrylate–silica gel system was proposed based on the results obtained to date.  相似文献   

4.
In order to elucidate the mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effects of dose rate and irradiation temperature were studied in detail. Monomer conversion increased with increasing dose rate and temperature. At the same conversion, the percent grafting increased with decreasing dose rate and also with increasing temperature. In general, GPC spectra of graft polymers and homopolymers showed two peaks; the ratio of the two peaks changed with dose rate and irradiation temperature. The dose-rate exponents of the polymerization rate of four peaks were different from each other. The activation energies of radical polymerization and cationic polymerization were about 2.6 kcal/mole and 0 kcal/mole, respectively. Based on the results obtained, a reaction mechansim is proposed.  相似文献   

5.
To investigate the reaction mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of pretreatment temperature of silica gel was studied. Preheating of silica gel was carried out at 200, 500, and 800°C. The number of silanol groups of silica gel surface decreased as preheating temperature increased. The rate of polymerization on the silica gel preheated at 500°C was faster than that at 200°C, but the polymerization rate on the silica gel preheated at 800°C was the lowest. These results suggest that rate of polymerization on the silica gel is affected by the conditions of silica gel surface such as the number of silanol groups and the pore size. At the same monomer conversion, percent grafting decreased as preheating temperature of silica gel increased. The GPC spectra of both graft polymers and homopolymers have two peaks at all preheating temperatures. The monomer conversion of low molecular weight peaks of graft polymers decreased as preheating temperature of silica gel increased. This result suggests that there is a probability that the grafting sites of low molecular weight peaks of graft polymers somehow interact with silanol groups.  相似文献   

6.
To elucidate the reaction mechanism of radiation-induced polymerization of the styrene—silica gel system, the influence of H2O as adsorbed water and inhibitor of cationic polymerization was investigated by two methods. Monomer conversion decreased as H2O increased. In general, percent grafting decreased as H2O increased, but the presence of a small amount of H2O increased the percent grafting. Grafting at 16 Mrad has a maximum value at a water content of about 0.2%. This seems to be due to two effects of H2O: percent grafting increases due to restraint of cationic polymerization by H2O, but the percent grafting decreases due to adsorption water which interrupts the contact of styrene with silica gel. In GPC spectra, the low molecular weight peaks of both graft polymers and homopolymers decreased when H2O was added. The GPC results suggest that the number of positive holes which initiate cationic polymerization is very large.  相似文献   

7.
Bulk polymerization of chloroprene was studied at 25°C in a wide does rate range. Variations of the rate of polymerization (Rp) and molecular weight as a function of does rate were essentially the same as those in several monomers that are capab;e of radical and cationic polymerizations. The polymerization proceeds with radical mechanism at low dose rate ans with radical and cationic mechanism concurrently at high dose rate. The number-average molecular weight of the high-dose-rate was ca. 2400. Microstructure of the polymers was mainly of trans-1,4 unit with small fraction of cis-1,4 and 3,4-vinyl unit. Fractions of the vinyl unit and the inverted unit in trans-1,4 sequence which increased at high does rate inflected the change of dominant mechanism of polymerization.  相似文献   

8.
Ozone-degradation products of polyethylenes prepared by γ-ray-Induced polymerization in ethyl alcohol, t-butyl alcohol, and 2,2,5-trimethylhexane were analyzed by gel permeation chromatography (GPC). The ozonized polymers show two discrete peaks in the GPC traces, and the ratio of molecular weights corresponding to the peaks is close to 1:2, suggesting that these polymers are composed of folded-chain crystals similar to solution-grown single crystals. The peak profiles, however, are broad and the peaks in the chromatograms shift concertedly toward lower molecular weight in the course of degradation. These findings suggest that the fold surfaces of the polymers are coarse and that there is no unique crystalline core containing a regularly folded layer. The long period estimated from small-angle x-ray measurements increases with increasing polymerization temperature, but scarcely varies with the solvent type. This implies that when crystallization occurs during polymerization, kinetic factors may have no great effect on crystallization.  相似文献   

9.
Polymerization of linear methyl ω-epoxyalkanoates of C-3 to C-10 carboxylic acids (0 to 7 methylene groups between oxirane ring and carbomethoxy group) was accomplished with a triethylaluminum/water/acetylacetone (1.0/0.5/1.0) initiator system to yield polymers of high molecular weight, apparently via a coordinative anionic mechanism. The rate of polymerization increased as the number of methylene groups between the oxirane ring and the carbomethoxy group increased, up to three methylene groups. When more than three methylene groups separate the polymerizable oxirane group and the carbomethoxy group, the rate of polymerization becomes essentially constant. The polymers were characterized by their infrared and 13C-NMR spectra, DSC, GPC, and inherent viscosity. The lower members of the series (ω-epoxyalkanoates of n < 3) gave polymers of lower molecular weight and wider-molecular-weight distribution (M w/M n > 2), while the higher members had molecular weight distributions between 1.5 and 2. The glass transition temperatures of the polymers also decreased from ?26°C for n = 1 to around ?50 to ?55°C for n ≥ 3.  相似文献   

10.
An investigation of the suitability of certain 1,3 dipole addition reactions as polymerization reactions was carried out. Reaction of p-phenylene-3,3′-disydnone and N,N′-hexamethylenedisydnone with the dipolarophiles m- and p-diethynylbenzene, m-divinylbenzene, and p-benzoquinone gave moderate molecular weight polymers containing pyrazole or pyrazoline units along the polymer backbone. The polymers are crystalline and have inherent viscosities of 0.4–0.6. The thermogravimetric analyses of the finely powdered polyprazoles showed breaks near 420°C. in air and 500°C. in nitrogen atmospheres.  相似文献   

11.
Anionic and group transfer polymerization processes were used to synthesize controlled molecular weight methacryloyloxy functionalized poly(dimethylsiloxane) and poly(methyl methacrylate) macromonomers having a narrow molecular weight distribution and high percent functionality. These macromonomers were anionically copolymerized with methyl methacrylate (MMA) to afford poly(methyl methacrylate)-graft-poly(methyl methacrylate) (PMMA-g-PMMA) and poly(methyl methacrylate)-graft-poly(dimethylsiloxane) (PMMA-g-PDMS) polymers having not only narrow molecular weight distribution graft parts but also backbone parts. The PMMA-g-PDMS system was fractionated using supercritical chlorodifluoromethane to determine its chemical composition distribution (CCD). The CCD for the PMMA-g-PDMS copolymerized in a living manner was substantially more narrow than the free radically copolymerized material. The PMMA-g-PMMA system was used to study the dilute solution properties of branched homopolymers. The appropriateness of the universal calibration gel permeation chromatography (GPC) method for branched systems exhibiting long chain branching was reaffirmed.  相似文献   

12.
The polymerization of methyl methacrylate initiated by dicyclohexyl peroxydicarbonate at 30 °C was studied in the presence of tri-n-butylboron and a series of quinones, namely, p-benzoquinone, chloranil, and 2,5-di-tert-butyl-p-benzoquinone, whose concentration changed from 0.25 to 2.00 mol.%. The initial polymerization rate and molecular weight of poly(methyl methacrylate) depend on the structure and concentration of quinone. The growth radicals react with p-benzoquinone and chloranil predominantly at the C=C bond, while they react at the C=O bond of 2,5-di-tert-butyl-p-benzoquinone. The terminal stable oxygen-centered radicals that formed react with alkylborane, terminating reaction chains and generating alkyl radicals into the bulk. The latter are involved in chain initiation.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2114–2119, October, 2004.  相似文献   

13.
The controlled radical polymerization of mesogen‐jacketed liquid crystalline polymers has triggered great interests in synthesis of complex structures as well as well‐defined linear homopolymers with controlled molecular weight and narrow molecular weight distributions. This review highlights the synthetic strategies of controlled radical polymerization of linear homopolymers, star polymers, superbranched polymers, graft polymers, block copolymers, star block copolymers, and so on. The employed living methods include nitroxide‐mediated radical polymerization and atom transfer radical polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 319–330, 2009  相似文献   

14.
Effects of a common-ion salt, n-Bu4NClO4, on the cationic polymerization of styrene and p-chlorostyrene by acetyl perchlorate were studied in a variety of solvents at 0°C. In polymerization (in CH2Cl2) which yielded polymers with a bimodal molecular weight distribution (MWD), addition of the salt suppressed the formation of higher polymers, but affected neither the molecular weight nor the steric structure of the lower polymers. The polymerization rate decreased with increasing salt concentration and became constant at or above a certain concentration. In nitrobenzene, on the other hand, the MWD of the polymers was unimodal and steric structure was unchanged even in the presence of salt at a concentration 50 times that of the catalyst. However, the polymerization rate and the polymer molecular weight decreased monotonically as salt concentration increased. On the basis of these results, it was concluded that the ion pair in methylene chloride differs from that in nitrobenzene, and that the species in the latter solvent is similar in nature to free ions. The fractional contribution of the dissociated and nondissociated propagating species to polymer formation was determined from the rate depression caused by addition of the salt.  相似文献   

15.
聚γ-缩水甘油醚氧丙基三甲氧基硅烷的合成与表征   总被引:1,自引:0,他引:1  
采用双金属氰化络合物催化剂(DMC)催化γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)开环聚合,合成出结构规整的均聚产物PKH560.通过FTIR2、9Si-NMR1、H-NMR对聚合物的结构进行表征.结果表明,以DMC为催化剂,可以实现KH560的开环聚合,合成出分子量较大的目标产物PKH560.凝胶渗透色谱与多角度激光联用仪(GPC/MALLS)测得该聚合物PKH560的数均分子量大于1×104,分子量分布介于1.10与1.35之间;分析不同聚合时间PKH560的数均分子量与单体转化率之间的关系可知,聚合物的数均分子量Mn与单体转化率呈线性增长关系,聚合物的分子量分布较窄(Mw/Mn=1.10~1.35),表明该聚合反应具有活性聚合的特征.  相似文献   

16.
A series of tetrapolyesters were obtained by polymerizing phloretic acid, hydroquinone, p‐hydroxybenzoic acid, or its derivatives, that is, vanillic acid or syringic acid, and dodecanedioic acid. Each monomer was polymerized in its acetylated form, except for the diacid to undergo polymerization by acidolysis. Initial polymerizations had shown that the use of phloretic acid resulted in better polymer properties than with p‐coumaric acid. The predominantly renewable polymers were obtained by melt polymerization using a two‐stage condensation process whereby antimony(III) oxide was applied as catalyst. Monomer conversions were typically close to 90%. 1H and 13C NMR, DSC, TGA, solution viscometry, and GPC were applied, as well as polarized microscopy to determine polymer microstructure and composition, transition temperatures, decomposition temperatures, intrinsic viscosities, and other molecular weight properties, and when applicable the liquid crystalline behavior of the polymers. All peaks, including end group peaks in the 13C NMR spectra were assigned, the monomer sequence distribution was verified to be random, and a complete dyad analysis involving nine dyads and eight peaks was performed. By using p‐hydroxybenzoic acid and its derivatives without any, one or two methoxy groups and varying the copolymer compositions, melting temperatures could be tuned between 106 and 181 °C. The tetrapolyesters, which included residues of p‐hydroxybenzoic acid, formed nematic liquid crystals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1498–1507  相似文献   

17.
In studies of various polymers in the solid state by pulsed and wide-line NMR, a relationship between the spin-lattice relaxation time and the fraction of mobile protons in the polymer sample was observed. This effect has been used to determine the degree of polymerization of a series of fumaronitrile homopolymers. The technique should have wide applicability in the direct determination of the number-average molecular weight M?n, especially for polymers that may be insoluble and/or infusible though not crosslinked.  相似文献   

18.
Abstract

Block polymerization of methyl methacrylate initiated with monohalo-terminated polystyrene/manganese carbonyl systems were investigated. The rate of polymerization was lower than that of the trihalo-terminated polystyrenelmanganese carbonyl system. The molecular weight of the block copolymers obtained was independent of the conversion. To define the polymerization mechanism, 1-bromobutane was employed as a model compound for monohalo-terminated polystyrene. Polymerization kinetics followed a modified rate equation based on the Michaelis-Menten mechanism. The molecular weight of the block co-polymer could be regulated by varying the ratio of monohalo-terminated polymer to methyl methacrylate. Graft polymerization of methyl methacrylate initiated with chloromethylstyrene-styrene copolymer/ manganese carbonyl was also carried out. The polymerization behavior was strongly affected by the concentration of manganese carbonyl. Characterization of graft copolymers by GPC and halogen analysis showed that the number of grafting points per backbone polymer molecule increased when the concentration of manganese carbonyl was raised, but that the branches became shorter.  相似文献   

19.
Polymerization of methyl methacrylate initiated by dicyclohexyl peroxydicarbonate in the presence of tri-n-butylboron and butyl-p-benzoquinone or 2,5-di-tert-butyl-p-benzoquinone occurred with no induction period. The yields and molecular masses of the polymers linearly increased with an increase in the conversion degree, which suggests the free-radical mechanism of “living” chain polymerization. The poly(methyl methacrylate) macrochains of the prepolymers contained sterically hindered aromatic structures with labile C-O bonds. The latter underwent reversible homolytic dissociation to give a growth-inducing radical and sterically hindered aryloxyls. Pseudoliving free-radical polymerization in the presence of the prepolymer (macroinitiator) was studied at 45, 60, and 80 °C. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1119–1122, June, 2007.  相似文献   

20.
The cationic monomers (CNBr), obtained by quarternization of dimethylaminoethyl methacrylate with n-alkyl bromide containing varying carbon number (N = 4, 8, 12, 14, and 16) were polymerized with radical initiators in water and various organic solvents. The degree of polymerization of the resulting polymers was determined by GPC measurements on poly(methyl methacrylate) samples derived from them. The rate of polymerization of the micelle-forming monomers (N = 8, 12, 14, and 16) in water increases with increasing a chain length of alkyl group, whereas it is little dependent on N in isotropic solution in dimethylformamide. The data on the degree of polymerization for the polymers of C4Br, C8Br, and C12Br show that the polymerization of C12Br with azo initiators in water and benzene gives polymers with a very high degree of polymerization. The results obtained here suggest that highly developed or relatively rigid, aggregated structures of monomers in solution are responsible for the formation of the polymers with a very high degree of polymerization, in addition to an enhanced rate of polymerization. Also considered are the relation of the molecular weight of poly(C12Br) to the viscosity data in chloroform and methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号