首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The alternating copolymerization of methyl methacrylate with styrene in the presence of stannic chloride at ?50°C in toluene was kinetically investigated both under photoirradiation and with the tri-n-butylboron-benzoyl peroxide initiator. The concentrations of the binary and ternary molecular complexes in the copolymerization solution were estimated by use of the equilibrium constants. The rates are found to be proportional to the 1.5th and 1.0th orders of the concentration of the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The conversion increases proportionally with the polymerization time, while the degree of polymerization is constant irrespective of the time. The rates depend linearly upon the square root of the intensity of the incident light and upon the concentration of tri-n-butylboron, respectively. The alternating copolymerization is confirmed experimentally to precede the homopolymerization of the monomer charged in large excess both under photoirradiation and with initiator. The kinetic results indicate consistently that the alternating copolymerization proceeds through the homopolymerization of the ternary molecular complex in the steady state with a bimolecular termination. Both the conventional radical mechanism and the double complex mechanism are unsuitable for the present alternating copolymerization.  相似文献   

2.
Alternating copolymerizations of methyl methacrylate with styrene in the presence of boron trichloride at 0°C in 1,2-dichloroethane were carried out by using benzoyl peroxide as an initiator. Conversion increased proportionally with polymerization time, whereas the degree of polymerization was constant irrespective of time. The rate depended linearly on the square root of the concentration of benzoyl peroxide. The equilibrium constants for the formation of the ternary molecular complex composed of methyl methacrylate, styrene, and boron trichloride in 1,2-dichloroethane at ?20, ?10, and +4°C were determined by 1H-NMR spectroscopy. The concentrations of the ternary molecular complex in the polymerization mixtures were evaluated from the equilibrium constant of the formation. The rate of the alternating copolymerization was proportional to the first order of the concentration of the ternary molecular complex. The distribution of methyl methacrylate-centered triads in the alternating copolymer was different from that of styrene-centered triads. These results can be explained by a mechanism involving the homopolymerization of a ternary molecular complex.  相似文献   

3.
The equimolar alternating copolymerization of methyl methacrylate (MMA) with styrene (St) in the presence of stannic chloride in toluene (Tl) is investigated kinetically. The concentrations of the ternary molecular complexes, [SnCl4-MMA … St] and [SnCl4-MMA … T1], are calculated by use of the formation constants of the ternary molecular complexes. The rates of copolymerization under photo-irradiation and with tri-n-butyl boron-benzoyl peroxide as an initiator are proportional to the 1.5th order and 1. Oth order, respectively, of the concentration of the ternary molecular complex [SnCl4 · MMA … St]. The alternating copolymerization precedes the homopolymerization of the methyl methacrylate charged in excess. The alternating regulation of the copolymerization is ascribed to the homopolymerization of the ternary molecular complex from the kinetic results. The magnitudes of the shifts for  相似文献   

4.
γ-Crotonolactone and styrene copolymerize alternately in the presence of stannic chloride at -10°C under photoirradiation. The intrinsic viscosity of the resulting copolymer is in the range of 0.6–0.8 dl/g at 30°C in chloroform. The equilibrium constants for the complex formation between stannic chloride and γ-crotonolactone were determined in 1,2-dichloroethane-toluene solution at 0 and ?20°C by use of absorption band at 350 nm. Continuous variation plots based on the 1H-chemical shift show a 1:1 interaction between styrene and the γ-crotonolactone coordinated to stannic chloride. The equilibrium constants for the ternary molecular complex formation between the coordinated γ-crotonolactone and styrene were determined in 1,2-dichloroethane in the temperature range from ?20 to 0°C. The equilibrium constants, derived independently from the measurements of the nonequivalent protons in γ-crotonolactone, are equal to each other within the experimental error. The mechanism of the alternating copolymerization of γ-crotonolactone and styrene in the presence of stannic chloride is discussed in terms of the homopolymerization of the ternary molecular complex.  相似文献   

5.
The equilibrium constants for the complex formation between stannic chloride and methyl methacrylate were determined in n-hexane–toluene solution at 0, ?20, and ?30°C by using the absorption band at 350 nm. Continuous variation plots at ?20°C in n-hexane based on the 1H-chemical shifts definitely show a 1:1 interaction between the coordinated methyl methacrylate and styrene or toluene. The magnitudes of the shifts for the four groups of protons in methyl methacrylate are found to be in a specific ratio in common with the 1:2 complex–styrene or -toluene system. The equilibrium constants for the ternary molecular complex formation between the 1:2 complex and styrene or toluene were determined in n-hexane in the temperature range ?50 to +20°C by use of the chemical shifts. The concentrations of the complex species in the alternating copolymerization solutions were estimated by use of the equilibrium constants. There is a linear relationship between the enthalpy and the entropy changes for the ternary molecular complex formation, which is governed by the enthalpy factor. The specificity of the interactions indicates a specific time-averaged orientation of benzene ring to the coordinated methyl methacrylate. The effects of the coordination of methyl methacrylate to stannic chloride were discussed on the basis of results of 13C-NMR spectroscopy.  相似文献   

6.
By the use of various boron compounds methyl methacrylate and styrene were copolymerized under photoirradiations at ?20°C. The alternately regulating activities of the boron compounds in the copolymerizations were in the following order: boron trichloride > ethylboron dichloride > boron trifluoride > diethylboron chloride ? triethylboron (?0). Boron trichloride and ethylboron dichloride exhibited such high regulating activities that their presence in 1 mol% in the charged methyl methacrylate was sufficient to complete equimolar alternating copolymerization. The alternating copolymerization proceeded in the steady state. The copolymerization rates decreased in the following order: boron trichloride ? ethylboron dichloride > diethylboron chloride ? triethylboron (?0). The cotacticities of methyl methacrylate-centered triads in the resulting copolymers were identical to those prepared with boron trichloride, ethylboron dichloride, and diethylboron chloride. The mechanism of the alternating copolymerization is discussed.  相似文献   

7.
Methyl methacrylate (MMA) and styrene (St) copolymerize in the presence of zinc chloride at 3°C under photoirradiation. The contents of methyl methacrylate in the copolymers obtained at a [ZnCl2]/[MMA] molar ratio of 0.4 are systematically larger than 53 mole %, which is the limiting value at a small feed ratio of methyl methacrylate. The resulting copolymers are confirmed as the sole products and not the mixtures by thin layer chromatography. The effect of dilution of the monomer feed mixture with toluene on copolymer composition suggests that it depends chiefly on the feed concentration of styrene and hardly at all on monomer feed ratios. Copolymerizations are also conducted in the presence of stannic chloride at ?17°C under photoirradiation and in the presence of ethylaluminium sesquichloride at 0°C with spontaneous initiation. The contents of methyl methacrylate in both copolymers obtained at feed ratios lower than 60 mole % almost correspond to the 1:1 alternating copolymer and increase systematically with higher feed ratios. The systematic deviations of copolymer composition obtained in the presence of metal halides are reasonably interpreted by the participation of the binary molecular complex composed of metal halide and methyl methacrylate in the polymerization of the ternary molecular complex composed of metal halide, methyl methacrylate, and styrene.  相似文献   

8.
Acrylonitrile–styrene, vinyl chloride–styrene and vinyl chloride–methyl methacrylate block copolymers were obtained by employing trapped radicals in polyacrylonitrile or poly(vinyl chloride) formed in a heterogeneous system by tri-n-butylboron in air as initiator. The trapped polymer radicals were activated on addition of dimethylformamide as solvent. Confirmation of block copolymers was carried out with solvent extractions, elementary analysis, and turbidimetry. In block copolymerization, the polyacrylonitrile trapped radical was more active than the poly(vinyl chloride) radical. Results of kinetic studies were used to consider the mechanism of polymerization.  相似文献   

9.
乙烯基单体/N-取代马来酰亚胺共聚合动力学   总被引:4,自引:0,他引:4  
详细研究了聚合温度、引发剂用量、单体配比对苯乙烯(St)/N-苯基马来酰亚胺(PMI)共聚合动力学的影响.对St、甲基丙烯酸甲酯(MMA)和丙烯腈(AN)等单一或混合单体与PMI、N-环己基马来酰亚胺(ChMI)和N-邻氯苯基马来酰亚胺(o-CPMI)的共聚合进行了研究,并讨论了单体结构的影响.  相似文献   

10.
A new method for deriving expressions for the mole fractions of alternating n-ads and the average lengths of the alternating sequences of n-component copolymers (n > 2) was developed based on the apparatus of finite Markov chains. These characteristics are considered as indexes of alternating tendency forn-component copolymerization. A specific property of n-component copolymerization (n > 3) compared with binary copolymerization is the fact that alternating n-ads might be constructed by two, three, or more types of monomeric units. In order to express this specific property of three and multi-component copolymers the term, alternating order, is introduced. The method developed in the paper permits the alternating indexes to be determined differentially in dependence of alternating order. Expressions for the average lengths and the compositions of all possible alternating sequences starting with a given monomer unit and ending with unit found only at that position, are derived as well. The alternating indexes for binary radical copolymerization of styrene and methyl methacrylate and for ternary radical copolymerization of styrene, methyl methacrylate, and acrylonitrile were determined.  相似文献   

11.
The radical copolymerizations of bistrimethylsilyloxycycloalkenes, such as 1,2-bistrimethylsilyloxycyclobutene (I), 1,2-bistrimethylsilyloxycyclopentene (II), and 1,2-bistrimethylsilyloxycyclohexene (III), were carried out with acceptor monomers, such as maleic anhydride, N-phenylmaleimide, and methyl methacrylate. I and II gave alternating copolymers with maleic anhydride and random copolymers with N-phenylmaleimide but no copolymer with methyl methacrylate. III gave no copolymer with the acceptor monomers. These polymerization behaviors of bistrimethylsilyloxycycloalkenes were explained primarily in terms of the electron donor–acceptor interaction between both monomers.  相似文献   

12.
The 1:1 or 2:1 complex of acrylonitrile, methacrylonitrile, or methyl methacrylate with ZnCl2 was copolymerized with styrene at the temperature of 0–30°C without any initiator. The structure of the copolymer from methyl methacrylate complex and styrene was examined by NMR spectroscopy. The complexes of acrylonitrile or methacrylonitrile with ZnCl2 gave a copolymer containing about 50 mole-% styrene units. The complexes of methyl methacrylate yielded an alternating copolymer when the feed molar ratio of methyl methacrylate to styrene was small, but with increasing feed molar ratio the resulting copolymer consisted of about 2 moles of methyl methacrylate per mole of styrene. The formation of a charge-transfer complex of styrene with a monomer coordinated to zinc atom was inferred from the ultraviolet spectra. The regulation of the copolymerization was considered to be effected by the charge-transfer complex. The copolymer resulting from the 2:1 methyl methacrylate–zinc chloride complex had no specific tacticity, whereas the copolymer from the 1:1 complex was richer in coisotacticity than in cosyndiotacticity. The change of the composition of the copolymer and its specific tacticity in the polymerization of the methyl methacrylate complex is related to the structure of the complex.  相似文献   

13.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

14.
The polymerization and copolymerization of 4-vinylcatechols, such as 2-(0-methyl)-4-vinylcatechol (I), 3,4-dimethoxystyrene (II), and 3,4-methylenedioxystyrene (III), were investigated in cyclohexanone at 30°C, using tri-n-butylborane as an initiator. The reactions yielded vinyl polymers and copolymers. The copolymerization parameters of I–III were determined; their Q and e values were found to be similar to those of styrene and vinylhydroquinone. The copolymerization of I–III gave copolymers of a highly alternating character. The thermal stability of the polymers and copolymers so obtained was also studied. The redox potentials of hydroloyzed poly(I) were examined; the reverse “polymer effect” was observed.  相似文献   

15.
Methyl acrylate and styrene have been copolymerized in the presence of zinc chloride either by photoinitiation or spontaneously. The copolymerization mechanism is investigated by analyses of copolymers composition and monomer sequence distribution. The resulting copolymers are not always alternating, their composition being dependent especially on the monomer feed ratio. Appreciable deviation to higher methyl acrylate unit content from an equimolar composition occurs at monomer feed fractions of methyl acrylate over 0.7. The larger deviation is induced by higher temperature, by photoirradiation, and by greater dilution of the reaction mixture with toluene. The 13C-NMR spectrum of the alternating copolymer shows a sharp singlet at the carbonyl region, whereas the spectra of random copolymers prepared by benzoyl peroxide initiation at 60°C show a triplet splitting at the carbonyl carbon region, irrespective of copolymer composition. The relative intensities of the triplet peaks for the random copolymers are in good correspondence to the contents of triad sequences calculated by means of conventional radical copolymerization theory. These results clearly indicate that the carbonyl splitting is caused predominantly by variation of the monomer sequence and not by variation of the stereosequence. The monomer sequence distribution in the copolymers is thus directly and quantitatively measured from the split carbonyl resonance. Although the same triplet splitting appears in the spectra of methyl acrylate–rich copolymers prepared in the presence of zinc chloride at high feed ratios (>0.7) of methyl acrylate, the relative intensities of the split peaks do not fit the sequence distributions of random copolymers calculated by means of the Lewis–Mayo equation. The copolymerization yielding these peculiar sequences and the alternating sequence in the presence of zinc chloride is fully comprehended by a copolymerization mechanism proceeding between two active coordinated monomers, i.e., the ternary molecular complex composed of zinc chloride, methyl methacrylate, and styrene, and the binary molecular complex composed of zinc chloride and methyl methacrylate.  相似文献   

16.
The radical polymerizations and copolymerizations of dimethylstannyl dimethacrylate (DSM) and trimethylstannyl methacrylate (TSM) in dimethylformamide (DMF) were studied. These monomers did not polymerize thermally, but easily underwent polymerization in the presence of α,α′-azobisisobutyronitrile and on irradiation with ultraviolet light. The polymer obtained from TSM was soluble in DMF and methanol, but that from DSM was insoluble in any organic solvents; this polymer probably consists of a network structure. These polymers were converted to poly(methyl methacrylate) (PMMA) by means of acid hydrolysis and then methylation with diazomethane. The content of syndiotactic triad was determined from infrared spectra of PMMA derived from the polymers of DSM and TSM. It was noted that the content of syndiotactic triad was greater in the radical polymerization of TSM than those of DSM at every temperature investigated. The differences in the activation enthalpy (ΔΔH?) and in the activation entropy (ΔΔS?) between isotactic and syndiotactic additions were determined as follows: for DSM, ΔΔH? = ~0 cal/mole, ΔΔS? = ?0.856 eu; for TSM, ΔΔH? = 229 cal/mole, ΔΔ = ?1.09 eu. From the radical copolymerizations of DSM and TSM with styrene at 60°C, the copolymerization parameters, Q and e, were evaluated as follows: for DSM, Q = 1.36, e = 0.41; for TSM, Q = 0.45, e = ?0.37. These results were compared with the reported effects of stannic chloride and zinc chloride on the radical polymerization of methyl methacrylate.  相似文献   

17.
Triad cotacticities of alternating copolymers of methyl methacrylate with styrene prepared in the presence of zinc chloride, ethylaluminium sesquichloride, and ethylboron dichloride are investigated from the mechanistic point of view by means of 1H- and 13C-NMR. The cotacticities from 1H-NMR spectra are obtained accurately by using α-d-styrene in the place of styrene and by measuring the spectra on the copolymer in o-dichlorobenzene at 170°C. The relative intensities of three peaks of the splitting signal for the methoxy protons in the nonalternating copolymers obtained by the use of benzoyl peroxide in the absence of metal halides agree well with the cotacticity distribution calculated theoretically by the Lewis-Mayo mechanism with the stereoregulation following Bernoullian statistics. The splitting signals in the 1H- and 13C-NMR spectra of the alternating copolymers prepared in the presence of metal halides cannot be explained by the same mechanism. The relative intensities of three peaks of the splitting signals for the methoxy protons and for the carbonyl carbon in the methyl methacrylate unit (the contents of cotactic triads centered by the methyl methacrylate unit) are not equal to those for the aromatic C1 carbon in the styrene unit (the contents of cotactic triads centered by styrene unit). The value of f2Y - 4fxfz is not equal to zero, where fx, fy, and fz are the cosyndiotactic, coheterotactic, and coisotactic triad contents, respectively, in the alternating copolymer. Copolymers obtained in the presence of zinc chloride are not exactly equimolar alternating but always contain a methyl methacrylate unit in excess, and the relative intensities of the three peaks for the aromatic C1 carbon change with the copolymer composition. These results are explained by a proposed mechanism: the alternating copolymerization proceeds through the homopolymerization of a ternary molecular complex composed of a metal halide, methyl methacrylate, and styrene, accompanied with the stereoregulation following first-order Markovian statistics; the increase of methyl methacrylate content in the copolymer prepared in the presence of zinc chloride is caused by the participation of the binary molecular complex composed of a metal halide and methyl methacrylate in addition to the ternary molecular complex.  相似文献   

18.
The Monte Carlo model of the ternary irreversible copolymerization is presented. The computer program MEMøRY-4, which implements the described model, is used to study the methyl methacrylate/methyl acrylate/maleic anhydride, butadiene/styrene/2-methyl-5-vinylpyridine, and styrene/methacrylonitrile/α-methyl styrene terpolymers. One discusses the problem of transferability of reactivity ratios determined for binary copolymerizations to the ternary ones. It can be concluded that the transferability is not assured, but using only composition data it is difficult to achieve a safe conclusion (Fisher statistics).  相似文献   

19.
The copolymerizations of phenyl-4′-vinylphenylbutadiyne (PVPB) with styrene and methyl methacrylate were carried out under various conditions. PVPB was more readily incorporated in copolymerization than the comonomers, but the diacetylenic group of PVPB interacted with the propagating radical, decreasing the polymerization rate and the molecular weight of copolymer. When the polymerization system became very viscous, crosslinking took place giving light green luminescent gels. The thermal behaviors of copolymers were also studied.  相似文献   

20.
Polymerization of methyl methacrylate with some cobalt (III) complexes was carried out in various solvents and in mixed solvents of acetone and water or alcohols. Sodium hexanitrocobaltate(III) was found to be an effective initiator in mixed solvent of water and acetone. The kinetic study on the polymerization of methyl methacrylate with Na3[Co(NO2)6] in a water-acetone mixed solvent gave the following over-all rate equation: Rp = 8.04 × 104 exp{ ?13,500/RT} [I]1/2[M]2 (mol/1.?sec). The effects of various additives on polymerization rate and the copolymerization curve with styrene suggest that polymerization proceeds via a radical mechanism. The dependence of the polymerization rate on the square of monomer concentration and the spectroscopic data were indicative of the formation of a complex between initiator and monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号