首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Ag2S/Ag heteronanostructure has been prepared for the first time by hydrochemical deposition. The “acanthite α-Ag2S–argentite β-Ag2S” phase transformation has been studied in situ by high-temperature X-ray diffraction and transmission electron microscopy. The crystal structure of argentite has been revealed. It has been found that the concentration of vacant sites in the metal sublattice of argentite exceeds 92%. The reversible acanthite–argentite transformation in the Ag2S/Ag heteronanostructure at the application of the external bias voltage is considered.  相似文献   

2.
In situ studies of the thermal expansion of polymorphic phases of coarse-crystalline and nanocrystalline silver sulfide, namely, monoclinic acanthite α-Ag2S and cubic argentite β-Ag2S, have been performed for the first time by high-temperature X-ray diffraction. The temperature dependences of the unit cell parameters of acanthite and argentite have been measured from temperatures in the range of 300–623 K, and the thermal expansion coefficients of acanthite and argentite have been determined. The observed difference between the thermal expansion coefficients of nano- and coarse-crystalline acanthite is shown to be due to a small size of nanocrystalline silver sulfide particles, which leads to an increase in the anharmonicity of atomic vibrations.  相似文献   

3.

The thermal expansion and the heat capacity of coarse-crystalline and nanocrystalline silver sulfide Ag2S were studied by dilatometry and differential scanning calorimentry for the first time in the temperature range 290–970 K. It is found that the thermal expansion coefficient and the heat capacity of nanocrystalline silver sulfide in this temperature range are higher than those in the case of the coarse-crystalline sulfide. It is revealed that the transformation of α-Ag2S acanthite to β-Ag2S argentite and β-Ag2S argentite to γ-Ag2S phase are the first-order phase transitions; the temperatures and the enthalpies of these transformations have been determined.

  相似文献   

4.
Sadovnikov  S. I.  Gusev  A. I. 《JETP Letters》2019,109(9):584-588

An alternative model has been proposed for the phase transition from cubic argentite ß-Ag2S to monoclinic acanthite α-Ag2S in silver sulfide as a disorder–order transition. It has been shown that, as the temperature decreases below the transition temperature Ttrans, S atoms equiprobably occupying the sites of the body centered cubic (bcc) nonmetal sublattice of argentite are concentrated at four sites of the monoclinic nonmetal sublattice, whereas the other sites remain vacant. A disorder-order transition channel including three superstructure vectors of k9 and k4 stars has been determined. The distribution function of sulfur atoms in monoclinic acanthite α-Ag2S has been calculated. It has been shown that displacements of sulfur atoms distort the bcc nonmetal sublattice of argentite, forming a monoclinic lattice, where silver atoms are spaced by quite large distances and occupy their crystallographic positions with a probability of 1. The region of allowed values of the long-range order parameters η9 and η4 for the model monoclinic ordered phase α-Ag2S has been determined.

  相似文献   

5.
Orientation relationships between low-temperature monoclinic semiconductor α-Ag2S acanthite and high-temperature body-centered β-Ag2S argentite are determined. It is shown that, in cubic argentite, possible distances between silver atoms are too small for the sites of the metal sublattice to be occupied by Ag atoms with probability equal to one. With regard to the possible arrangement of Ag atoms, it is shown that, during the “acanthite–argentite” transformation, the jump of a silver ion from site (e) of monoclinic acanthite to site (j) of cubic argentite is the most probable process. It is established that the acanthite–argentite transformation in Ag2S/Ag heteronanostructure is accompanied by the formation of a conductive channel of silver Ag and β-Ag2S argentite under the application of an external voltage. The on-to-off-state current ratio in the synthesized Ag2S/Ag heteronanostructure is approximately equal to 670. For the Ag2S/Ag heteronanostructure, the energy barrier for the hopping of an Ag+ ion from an atomic site of monoclinic acanthite to a site of cubic argentite is estimated.  相似文献   

6.
Reflectivity measurements in the far infrared and infrared (20–1500 cm?1) of polycristalline β-Ag2S at 4.2, 62 and 300K and of α-Ag2S at 473K are presented. The observed phonon structure of β-Ag2S is discussed. The reflectance of α-Ag2S is high in the far infrared and shows a plasma edge near 1000 cm?1. The optical constants of α-Ag2S as calculated with a Kramers-Kronig analysis are compared with the predictions of the Drude theory.  相似文献   

7.
We propose a model of phase transformation cubic argentite–monoclinic acanthite in silver sulfide Ag2S (AgS0.5) as ordering in two argentite sublattices. We have determined the channel of the disorder–order transition including four nonequivalent superstructure vectors of stars {k9} and {k4}. For monoclinic acanthite α-Ag2S, we have calculated the distribution function for silver atoms occupying b positions in argentite, as well as the distribution function for sulfur atoms. Ordering in both sublattices is complicated by static atomic displacements. The displacement of S atoms distort the body-centered cubic (bcc) nonmetallic argentite sublattice, forming a monoclinic lattice in which silver atoms are at large distances from one another and occupy their crystallographic positions with unit probability. We have determined the range of admissible values of long-range order parameters η9 and η4 for the model monoclinic ordered α-Ag2S phase.  相似文献   

8.
Sadovnikov  S. I.  Gusev  A. I. 《JETP Letters》2021,114(3):156-162
JETP Letters - The relative position of atomic planes of low-temperature monoclinic acanthite α-Ag2S and high-temperature bcc argentite β-Ag2S has been determined from X-ray and electron...  相似文献   

9.
This paper provides a confirmation of the effectiveness of the recently suggested ab initio approach to the theoretical prediction of phase transformations which may be induced in metallic alloys by metal plasma immersion and ion implantation processing. The approach is based on an assumption that at certain concentrations of the implanted species, the relaxation of the exited electronic state of the implanted structure should be accompanied by the rearrangement of atoms leading to the formation of a new phase. Recently, on the basis of density functional theory calculations of the energetic characteristics of the electronic subsystems of the implanted Mg–Ag system, it was predicted that concentrations of the implanted Ag ions within the range from ~18 to 23 at% Ag, favor transition to the phase ε′-Ag17Mg54. Our transmission electron microscopy observations and electron diffraction analysis of the Mg-based alloy subjected to the implantation of Ag ions at dose of ~5×1015 ion/cm2 confirmed that the formation of the ε′-Ag17Mg54 phase indeed takes place.  相似文献   

10.
《Solid State Ionics》1986,21(2):117-129
The relative stoichiometry of Ag2S containing dispersions of 0.2 μm Al2O3 particles was measured as a function of the chemical potential of silver between 158 and 220°C using solid state coulometric titration. For composites consisting of 3.5 m2 of interface area per 1 cm3 of Al2O3Ag2S composite, the effective homogeneity range in comparison to the pure material was as much as 120 times greater for the low temperature phase (α-Ag2S) and 50% greater for the high temperature phase (β-Ag2S). The process was described as that of silver absorption at solid—solid interfaces. Absorption isotherms and partial molar quantities for the interface were determined at 158 and 200°C.  相似文献   

11.
New materials of the K3 ? 2x Pb x PO4 system with high potassium-cation conductivity have been synthesized and studied. It has been found that the introduction of Pb2+ cations substantially increases the conductivity of K3PO4 due to the formation of potassium vacancies and the stabilization of the high-temperature cubic structure of the orthophosphate. At low temperatures, the maximum conductivity has been observed in the composition range x = 0.15–0.20 and varies from ~10?2 S cm?1 at 400°C to ~10?1 S cm?1 at 700°C. The factors influencing the transport properties of the materials under study have been discussed.  相似文献   

12.
Here, we report the synthesis and characterization of CoFe2O4 doping Ag2S dendrimer-modified nanoparticles (CoFe2O4-Ag2S DMNs) in Cry1Ab protein detection and imaging. The near-infrared Ag2S quantum dots were first prepared by using the thermal decomposition method, followed by modification of the water-soluble quantum dots using the method of solvent evaporation and ligand exchange, and finally the fluorescent magnetic bifunctional nanoparticles were obtained by binding with CoFe2O4. As-prepared CoFe2O4-Ag2S DMNs were characterized by fluorescence (FL) spectroscopy and transmission electron microscopy (TEM). Results showed that Ag2S DMNs could sensitively detect Cry1Ab both in vitro and in vivo. In vitro, the enhanced FL intensity as a function of the concentration is notably consistent with the Langmuir binding isotherm equation in the range of 0–200 ng/mL of Cry1Ab proteins. The detection limit of this method was found to be 0.2 ng/mL. Meanwhile, the fluorescence wavelength was extended to the second near-infrared range (NIR-II, 1.0~1.4 μm), which enables in vivo imaging. This study highlights the importance of NIR QDs doping magnetic materials as a new method to trace Bacillus thuringiensis (Bt) in insects and their potential applications in in vivo NIR tissue imaging.  相似文献   

13.
Molecular sulphur undergoes rapid dissociative chemisorption on Ag(111) with an essentially constant sticking probability of unity up to the completion of the first layer of S atoms. At this stage a (√39 R 16.1° × √39 R? 16.1°) structure is formed in which the S atom arrangement and spacing is similar to that in the (100) plane of γ-Ag2S (the high temperature form of silver sulphide). Further dosing with S2 leads to continued rapid uptake of sulphur and the appearance of a (√7 × √7) R 10.9° structure, the Auger, Δφ and thermal desorption data all indicate that fast formation of Ag2S now occurs. Very well-ordered growth of γ-Ag2S(111) is now observed, and low-temperature S2 desorption spectra appear which show that the activation energy for S2 desorption is ~175 kJ mol?1 ; this value is in excellent agreement with that observed for the enthalpy of decomposition of bulk Ag2S (2 Ag2S(s) → 4 Ag(s) + S2(g), ΔH = +179 kJmol?1). All the properties of the Ag(111)-S system imply that the material characterised by the √39 structure (i.e. the first adsorbed layer of S) is very different from bulk Ag2S. This is discussed and compared with the results of other studies on metal-sulphur systems.  相似文献   

14.
The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag+ ions, Ag+-Ag+ and Ag+-Ag0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag+-Ag0→Ag+-Ag+ energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag2O and SnO, and 4 mol% of Ag2O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag+-Ag0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag+-Ag0 plasmon resonance energy transfer. The data thus indicates that energy transfer between Ag+-Ag0 pairs and NPs is bi-directional.  相似文献   

15.
Nanocomposite polymer electrolyte consisting of polyvinyl alcohol (PVA) and lithium acetate with TiO2 filler has been synthesised by combination of solution cast technique and sol–gel process. The composite electrolyte films were characterised by different experimental techniques. The average particle size of composite electrolytes lies between 25 and 30?nm. System is essentially ionic with maximum conductivity of polymer electrolyte 90[80PVA–20LiAc]:10TiO2 (~4.5?×?10?6?S?cm?1) at room temperature.  相似文献   

16.
Ab initio band structure calculations were performed for the low-temperature modifications of the silver chalcogenides β-Ag2Se, β-Ag2Te and the ternary compound β-Ag3AuSe2 by the local spherical wave (LSW) method. Coordinates of the atoms of β-Ag2Se and β-Ag3AuSe2 were obtained from refinements using X-ray powder data. The structures are characterized by three, four and five coordinations of silver by the chalcogen, a linear coordination of gold by Se, and by metal-metal distances only slightly larger than in the metals. The band structure calculations show that β-Ag3AuSe2 is a semiconductor, while β-Ag2Se and β-Ag2Te are semimetals with an overlap of about 0.1-0.2 eV. The Ag 4d and Au 5d states are strongly hybridized with the chalcogen p states all over the valence bands. β-Ag2Se and β-Ag2Te have a very low DOS in the energy range from about −0.1 to +0.5 eV. The calculated effective mass β-Ag2Se is about 0.1-0.3 me for electrons and 0.75 me for holes, respectively.  相似文献   

17.
A systematic investigation of the thermal desorption of halogens from well characterized (111), (100) and (110) 4d (Nb, Mo) and 5d (Ta, W) transition metal surfaces has been carried out under low coverage conditions (θ < 10?2 of a monolayer). Characterization of the surfaces was achieved by LEED, AES and work function determinations while the desorption kinetics were recorded in a large temperature range (1700–2300 K) using a pulsed ionic beam method. The new data concerning some Ta and W surfaces are presented and the results of this systematic study are discussed. It is shown that the halogen desorption parameters, e.g., desorption energies and preexponential factors, are independent of both surface structure and d bond filling of the substrate; E(F) ~4.75 eV, E(Cl) ~4.1 eV, E(Br) ~3.7 eV and τ0 ~10?13 ?10?14 S. The halogen behaviour is compared with that of other adsorbates and with the predictions of a general chemisorption model.  相似文献   

18.
The pulsed ruby laser induced reactive-quenching process at Fe/C6H6 Ibenzenel has been investigated using conversion electron Mössbauer spectroscopy [CEMS]. It is shown that iron carbide phases can be synthesized when an iron foil immersed in benzene is treated with ruby Laser pulses [λ=694 nm, pulse width ~30 ns, energy density =15 J/cm2]. The results indicate the formation of ε-carbide and Fe5C2 phases in the as-treated sample and its transformation to Fe3C upon thermal treatment. The result of the CEMS measurements are supported by small angle X-ray diffractometry.  相似文献   

19.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

20.
Thermal expansion and structural and magnetic phase transitions in alloys of the Ni–Mn–Sn system have been investigated. The spontaneous martensitic transformation in Ni51–xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is ~1.5 × 10–3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51–xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13(x = 4) alloys have been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号