首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/NiO多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场.外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

2.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/Ni O多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场,外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

3.
Investigation has been performed on the interlayer coupling between two Co/Pt multilayers with perpendicular anisotropy separated by Cr spacers. As a function of the Cr spacer thickness, only ferromagnetic interlayer coupling has been observed between the two Co/Pt multilayers in contrast to the oscillatory interlayer coupling between ferromagnetic and antiferromagnetic observed in ferromagnetic layers with in-plane anisotropy separated by Cr spacers. It is the strength of the ferromagnetic interlayer coupling that has been observed to be oscillatory as a function of the Cr spacer thickness with a period of about 7 Å.  相似文献   

4.
The magnetic properties of multilayer Gd/Si/Co magnetic films are experimentally studied by electron magnetic resonance and analyzed theoretically. The introduction of a semiconductor silicon interlayer is found to substantially affect the magnetic interlayer coupling and the magnetic dynamics of the system. The interlayer coupling is shown to be ferromagnetic for the (Gd/Si)n films and to be antiferromagnetic for the (Gd/Si/Co/Si)n films. The temperature dependences of the exchange parameters and the gyromagnetic ratios are determined. Possible mechanisms responsible for the formation of the interlayer coupling are discussed.  相似文献   

5.
Physics of the Solid State - It has been established that nonmonotonic magnetization relaxation in Pt/Co/Ir/Co/Pt synthetic ferrimagnets (SF) with perpendicular magnetic anisotropy is caused by the...  相似文献   

6.
We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and the interlayer exchange coupling, including the regions where interlayer coupling goes through zero. We see significant changes in domain structure based on the sign of coupling, and also show that magnetic domain size is directly related to the magnitude of the interlayer exchange coupling energy, which generally dominates over the magnetostatic interactions. When magnetostatic interactions become comparable to the interlayer exchange coupling, a delicate interplay between the differing energy contributions is apparent and energy scales are extracted. The results are of intense interest to the magnetic recording industry and also illustrate a relatively new avenue of undiscovered physics, primarily dealing with the delicate balance of energies in the formation of magnetic domains for coupled systems with PMA, defining limits on domain size as well as the interplay between roughness, domains and magnetic coupling.  相似文献   

7.
Magnetic and structural properties in [MnPd/Co]10 multilayers deposited onto Si(1 1 1) substrates have been investigated. The dependences of anisotropy and exchange bias on the thicknesses of both MnPd and Co layers have been studied. In most of the samples, the out-of-plane magnetic anisotropy and both large out-of-plane and in-plane exchange biases have been observed at cryogenic temperature below the blocking temperature TB≈240 K. With appropriate MnPd and Co thicknesses, we have obtained samples with a large out-of-plane exchange bias along with a large out-of-plane magnetic anisotropy. The origin of the out-of-plane magnetic anisotropy in the samples has been suggested to be due to the formation of CoPd interfacial alloys which have tensile in-plane strains, while the spin structure of the antiferromagnetic layer at the interface which is believed to be responsible for exchange bias may be the same as that of the bulk material. Also, the present study shows that the interplay between the out-of-plane magnetic anisotropy and exchange bias is evident in our multilayers and plays an important role in the out-of-plane exchange-bias mechanism.  相似文献   

8.
The magnetic properties of Co/Si multilayer films produced through rf ion sputtering were studied in the temperature range 4.2–300 K. The dependences of the spontaneous magnetization and hysteresis characteristics of the films on the thicknesses of the magnetic layers and nonmagnetic spacers are established. It is shown that these dependences are determined to a large extent by interlayer interfaces, in which the effective magnetic moment of the Co atoms and the exchange interaction decrease and magnetic-anisotropy dispersion arises. A probable cause of the interface formation is interlayer mixing (which is estimated to penetrate to a depth of 15 Å) and the strong effect of Si on the Co electronic structure.  相似文献   

9.
The interlayer coupling in three-layer FeNi/Bi/FeNi films is studied by electron magnetic resonance. The magnetic anisotropy at the permalloy–bismuth interface is shown to play a significant role in the formation of the magnetic state of the film structure. The interlayer coupling oscillation period is found to be about 8 nm. The interlayer coupling and the interface anisotropy and their temperature dependences are determined.  相似文献   

10.
The effect of isothermal annealing on the magnetic anisotropy, bilinear and biquadratic exchange coupling energies, and domain structure of Co/Cu/Co trilayer fiilms with dCo=6 nm and dCu=1.0 and 2.1 nm prepared by magnetron sputtering has been studied. It is shown that, under isothermal annealing, the biquadratic coupling energy decreases by more than an order of magnitude in films with dCu=1.0 nm and increases in films with dCu=2.1 nm. The fourth-order magnetic anisotropy is shown to be related to the existence of biquadratic exchange energy.  相似文献   

11.
We have investigated the correlation between morphology and magnetic anisotropy in nanostructured Co films on Cu(001). The formation of nanoscale ripples by ion erosion is found to deeply affect the magnetic properties of the Co film. A surface-type uniaxial magnetic anisotropy with easy axis parallel to the ripples is observed. The origin of the magnetic anisotropy has been identified with the modification of thermodynamic-step distribution induced by ripple formation. At higher ion doses, when Co ripples detach and crystalline nanowires form, a strong enhancement of the magnetic anisotropy due to magnetostatic contributions is observed.  相似文献   

12.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

13.
Within the framework of two-dimensional (2D) numerical micromagnetic simulations, the equilibrium magnetization configuration and the high-frequency (0.1–30 GHz) linear response of Co/Fe multilayers have been investigated in detail. Due to the perpendicular anisotropy of Co layers, a stripe domain pattern can develop through the whole multilayer, the characteristics of which depend on the magnitude of the perpendicular anisotropy, the respective thicknesses of Co and Fe layers and the number of Co/Fe bilayers in the stack. One of the most striking features associated with the layering effect is the ripening aspect of the static magnetization configuration across the multilayers which induces complicated dynamic susceptibility spectra including surface modes and volume modes strongly confined within the inner Fe layers. The effect of the cubic magnetocrystalline anisotropy of Fe layers and the influence of a nonuniform perpendicular magnetic anisotropy within the Co layers on the static and dynamic magnetic properties of Co/Fe multilayers are then analyzed quantitatively.  相似文献   

14.
Interlayer exchange coupling that oscillates between antiferromagnetic and ferromagnetic as a function of NiO thickness has been observed in [Pt(5 A)/Co(4 A)](3)/NiO(t(NiO) A)/[Co(4 A)/Pt(5 A)](3) multilayers with out-of-plane anisotropy. The period of oscillation corresponds to approximately 2 monolayers of NiO. This oscillatory behavior is possibly attributed to the antiferromagnetic ordering in NiO. The antiferromagnetic interlayer exchange coupling for the 11 A NiO layer shows an increase in coupling strength with increasing temperature, in agreement with the quantum interference model of Bruno for insulating spacer layers. A coexistence of exchange biasing and antiferromagnetic interlayer exchange coupling has been observed below T=250 K.  相似文献   

15.
俱海浪  李宝河  吴志芳  张璠  刘帅  于广华 《物理学报》2015,64(9):97501-097501
采用直流磁控溅射法在玻璃基片上制备了Pt底层的Co/Ni多层膜样品, 对影响样品垂直磁各向异性的各因素进行了调制, 通过样品的反常霍尔效应系统的研究了Co/Ni多层膜的垂直磁各向异性. 结果表明, 多层膜中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要的影响. 通过对多层膜各个参数的调制优化, 最终获得了具有良好的垂直磁各向异性的Co/Ni多层膜最佳样品Pt(2.0)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2.0), 经计算, 该样品的各向异性常数Keff 达到了3.6×105 J/m3, 说明样品具备良好的垂直磁各向异性. 最佳样品磁性层厚度仅为0.8 nm, 样品总厚度在5 nm以内, 可更为深入的研究其与元件的集成性.  相似文献   

16.
Co/Cr/Pd多层膜的磁性和磁光特性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
关键词:  相似文献   

17.
研究了用射频磁控溅射方法制备的[Co(1.5nm)/V(dV)]20(0.5nm≤dV≤4nm)多层膜的结构和磁性.用X射线衍射、透射电子显微镜、高分辨率透射电子显微镜等手段对其结构的分析,表明它们层状周期结构良好,沿膜的生长方向具有fcc Co(111)和bcc V(110)织构,且是由小的柱状晶粒构成的多晶薄膜.界面一定程度的合金化,使其成为成分调制周期结构,也是它们的一个结构特征.由其铁磁共振谱计算得到较小的g因子和4πMe 关键词:  相似文献   

18.
用磁控溅射法制备了Mn含量一定、不同PtMn层厚度的Pt974Mn26/Co磁性多层膜系列,通过x射线衍射对该多层膜系列进行结构分析;测定了不同PtMn层厚度系列样品的磁滞回线、有效垂直各向异性,分析了饱和磁化强度和有效垂直各向异性变化的原因;通过测定该多层膜体系的克尔谱,分析了一定波长下克尔角随PtMn层厚度变化的规律.认为克尔角的变化是由于界面的合金化以及原子的极化减小所致. 关键词: 多层膜 磁性 磁光  相似文献   

19.
Multilayers of [Co/Ni(tNi)/Co/Pt]×4 are investigated for different Ni insertion layer thicknesses. The resulting magnetic properties and magnetic domain structures are compared with [Co/Ni]×8 multilayers. As determined by magneto-optical Kerr effect microscopy and a vibrating sample magnetometer measurements, all multilayers exhibited a perpendicular magnetic anisotropy. It is found that the nucleation field and magnetic coercivity of [Co/Ni(t)/Co/Pt]×4 multilayers are lower than (Co/Ni)×8 and decreased with Ni thickness. Magnetization decay measurements reveal that these multilayers did not show an exponential decay behavior as was observed in rare earth transition metal alloys. Very narrow wires will remain stables for several hours even with an applied magnetic field closer to the coercivity. Insertion of very thin Ni in (Co/Pt) multilayers offers a good way to optimize the magnetic properties of the material and adjust the domain size for nanowire-based devices.  相似文献   

20.
李铁  沈鸿烈 《中国物理》2002,11(1):54-57
In this paper,we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in the symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer and analysing in terms of the multi-domain Ising models.It has been found that some magnetic layer can have quite different magnetic behaviours in different structures of spin valves,depending on the properties of the under-layer.In our investigation,we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of the under-layer,whereas this is not the case for the NiFe layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号