共查询到5条相似文献,搜索用时 15 毫秒
1.
R. A. Mustafaev 《Computational Mathematics and Mathematical Physics》2008,48(2):269-274
Dorodnicyn’s generalized method of integral relations is used to compute a Verigin-type single-phase unsteady flow in a porous medium. This problem describes the pumping of a gas through a gallery in a bounded horizontal aquifer and is associated with underground gas storage in aquifers. The case of an isothermal process and an ideal gas are considered. The viscosity of the gas is neglected. Sines are used as smoothing functions. The results obtained in the first and third approximations are presented and analyzed. The solution is compared with a finite-difference solution and that produced by the method of integral relations. The results are given in a table. 相似文献
2.
The fully developed electrically conducting micropolar fluid flow and heat transfer along a semi-infinite vertical porous moving plate is studied including the effect of viscous heating and in the presence of a magnetic field applied transversely to the direction of the flow. The Darcy-Brinkman-Forchheimer model which includes the effects of boundary and inertia forces is employed. The differential equations governing the problem have been transformed by a similarity transformation into a system of non-dimensional differential equations which are solved numerically by element free Galerkin method. Profiles for velocity, microrotation and temperature are presented for a wide range of plate velocity, viscosity ratio, Darcy number, Forchhimer number, magnetic field parameter, heat absorption parameter and the micropolar parameter. The skin friction and Nusselt numbers at the plates are also shown graphically. The present problem has significant applications in chemical engineering, materials processing, solar porous wafer absorber systems and metallurgy. 相似文献
3.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed. 相似文献
4.
Ching-Yang Cheng 《Applied mathematics and computation》2009,212(1):185-193
This work presents a boundary layer analysis about variable viscosity effects on the double-diffusive convection near a vertical truncated cone in a fluid-saturated porous medium with constant wall temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of the temperature. A boundary layer analysis is employed to derive the nondimensional nonsimilar governing equations, and the transformed boundary layer governing equations are solved by the cubic spline collocation method to yield computationally efficient numerical solutions. The obtained results are found to be in good agreement with previous papers on special cases of the problem. Results for local Nusselt and Sherwood numbers are presented as functions of viscosity-variation parameter, buoyancy ratio, and Lewis number. For a porous medium saturated with a Newtonian fluid with viscosity proportional to an inverse linear function of temperature, higher value of viscosity-variation parameter leads to the decrease of the viscosity in fluid flow, thus increasing the fluid velocity as well as the local Nusselt number and the local Sherwood number. 相似文献
5.
Emilio Cariaga Fernando Concha Iuliu Sorin Pop Mauricio Sepúlveda 《Mathematical Methods in the Applied Sciences》2010,33(9):1059-1077
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献