首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependences of the velocity of longitudinal sound, internal friction, and magnetization of the single crystal with the nominal composition La0.6Pr0.1Ca0.3MnO3 have been measured. It has been found that the substitution of praseodymium for lanthanum in La0.7Ca0.3MnO3 leads to a decrease in the velocity of sound and to an increase in the spontaneous magnetization. The method of determining the Curie temperature distribution function during a first-order transition has been proposed. It has been shown that, in the crystal under study, this function is asymmetric.  相似文献   

2.
An experimental study of the temperature behavior of longitudinal sound velocity, internal friction, electrical resistivity, and thermopower of single-crystal La0.75Ba0.25MnO3 is reported. A structural transition accompanied by a large jump (18%) in the sound velocity was found to occur at T S ≈170 K. Within the interval 156–350 K, the temperature dependences of the sound velocity and internal friction reveal a temperature hysteresis. An internal-friction peak due to relaxation processes was detected. The metallic and semiconducting regions are separated by a transition domain about 80 K wide lying below the Curie temperature T C =300 K.  相似文献   

3.
The temperature dependences of the velocity of longitudinal sound waves and the internal friction in a La0.82Ca0.18MnO3 single crystal with the Curie temperature T C = 181 K have been studied. As temperature decreases, the single crystal is shown to undergo the transition from the pseudocubic O* to the Jahn–Teller O’ phase at T ~ 254 K and the reverse transition from O’ to O* phase at T ~ 84 K. The velocity of sound and the internal friction in the O’ phase are found to be significantly smaller than those in the O* phase.  相似文献   

4.
Transport properties of phase separated La0.8Ca0.2MnO3 crystals in the aged highly resistive metastable state were studied. It was found that the coexistence of different ferromagnetic phases at low temperatures is sensitive to electric current/field. In a contrast with the previously studied low resistivity metastable states the high resistivity state exhibits positive magnetoresistance and significant current dependence of the resistivity even at temperatures much higher than the Curie temperature. Application of current pulses results in appearance of zero bias anomaly in the current dependent conductivity. Similarly to the low resistivity metastable states the memory of the resistivity can be erased only after heating of the sample to Te ≈360 K. After one year storage at room temperature the La0.8Ca0.2MnO3 samples show clear signatures of aging. The aged samples spontaneously evolute towards high resistivity states. The results are discussed in the context of a coexistence of two ferromagnetic phases with different orbital order and different conductivity. The metallic ferromagnetic phase seems to be less stable giving rise to the experimentally observed electric field effects and aging.  相似文献   

5.
The evolutions of electronic phase separation in manganites La0.225Pr0.4Ca0.375MnO3 are studied by the specific temperature and magnetic-field cycling experiments. It is found that the electronic phase separation state at low temperature can be tuned substantially by temperature and/or magnetic-field cycles. Surprisingly, the initial more ferromagnetic metallic (FMM) nuclei can impede the growth of these nuclei during the cooling process. It implies that there must coexist more than two phases which take part in the complex first-order phase transitions, and the charge-disordered insulating phase is possible, one of the parent phases transiting into the FMM phase at low temperature. In addition, the accommodation strain is suggested to control the nucleation and growth of FMM domains.  相似文献   

6.
Two phases, paramagnetic and ferromagnetic, were shown by the magnetic resonance method to coexist below the temperature T C in La0.7Pb0.3MnO3 single crystals exhibiting colossal magnetoresistance. The magnetic resonance spectra were studied in the frequency range 10–78 GHz. The specific features in the behavior of the spectral parameters were observed to be the strongest at the temperatures corresponding to the maximum magnetoresistance in the crystals. The concentration ratios of the paramagnetic and ferromagnetic phases in the samples were found to be sensitive to variations in temperature and external magnetic field. This behavior suggests realization of the electronic phase separation mechanism in the system under study.  相似文献   

7.
This paper reports on the sonochemical-assisted synthesis of La0.7Sr0.3MnO3 (LSMO) nanoparticles (NPs) which have a single-crystalline perovskite structure. The average particle size of LSMO NPs was controlled from about 40 to 120 nm by changing the annealing temperatures from 750 to 1050°C. The particle size, electrical resistivity, and ferromagnetic transition temperature of LSMO NPs were strongly dependent on the annealing temperature. A substantial decrease in resistivity and an enhancement in the insulator–metal transition temperature were found on increasing the annealing temperature. Furthermore, the enhancement in magnetization and paramagnetic–ferromagnetic (PM–FM) transition temperatures was observed as the annealing temperature increases.  相似文献   

8.
It was pointed out in some works that asymmetry of an electron paramagnetic resonance (EPR) line is generally caused by both the electrical conduction and the nondiagonal elements of the dynamic susceptibility of a magnetic subsystem. Direct measurements of the temperature dependences of the conductivity and the EPR line shape in a La0.70Ca0.25Ba0.05MnO3 sample showed that the conduction makes the predominant contribution to the EPR line asymmetry.  相似文献   

9.
The effect of oxygen isotope substitution on the properties of Pr0.5Ca0.5Mn1 ? x Cr x O3 manganites (x = 0, 0.02, 0.05) have been studied. The introduction of chromium favors (i) the decomposition of a charge-ordered state and (ii) the appearance of a ferromagnetic metallic phase in Pr0.5Ca0.5Mn1 ? x Cr x 16–18O3. The isotope substitution 16O → 18O leads to a decrease in the content of the ferromagnetic phase, an increase in the charge-ordering transition temperature (T CO), and a decrease in the ferromagnetic transition temperature (T FM). The isotope mass exponent is evaluated.  相似文献   

10.
Experimental studies of the structural, magnetic and magnetocaloric properties of the three compounds Pr0.5X0.1Sr0.4MnO3 (X = Ce, Eu and Y) are reported. Our samples were synthesized using the Pechini sol–gel method. X-ray powder diffraction at room temperature indicates that our materials crystallize in the orthorhombic structure with Pbnm space group. The compounds undergo a second-order magnetic transition from paramagnetic to ferromagnetic state around their own Curie temperatures T C ~ 310, 270 and 230 K for X = Ce, Eu and Y, respectively. A considerable magnetocaloric effect (MCE) is observed around room temperature. The maximum values of magnetic entropy change ?S max are 3.54, 3.81 and 2.99 J/kgK for the samples with X = Ce, Eu and Y, respectively, when a magnetic field of 5 T was applied. The relative cooling power (RCP) values for the corresponding materials are 246.60, 261.66 and 298 J/kg. It is shown that for Pr0.5X0.1Sr0.4MnO3 the exponent n and the magnetic entropy change follow a master curve behavior. With the universal scaling curve, the experimental ?S at several temperatures and fields can be extrapolated.  相似文献   

11.
The structure and magnetic states of a crystal of lightly doped manganite La0.95Ba0.05MnO3 were studied using thermal-neutron diffraction, magnetic measurements, and electrical resistance data in a wide temperature range. It is shown that, in terms of its magnetic properties, the orthorhombic crystal is characterized by two order parameters, namely, antiferromagnetic (T N = 123.6 K) and ferromagnetic (T C = 136.7 K). The results obtained differ in detail from known information on the manganites La0.95Ca0.05MnO3 and La0.94Sr0.06MnO3. Two models of the magnetic state of the La0.95Ba0.05MnO3 crystal are discussed, one of which is a model of a canted antiferromagnetic spin system and another is associated with the phase separation of the manganite. Arguments are advanced in favor of the coexistence in this crystal of the antiferromagnetic phase (about 87%) with a Mn4+ ion concentration of 0.048 and the 1/16-type charge-ordered ferromagnetic phase (about 13%) with a Mn4+ ion concentration of 0.0625. The specific features of the manganite studied are due to self-organization of the La0.95Ba0.05MnO3 crystal lattice caused by the relatively large barium ion size.  相似文献   

12.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

13.
The temperature and field dependences of the specific magnetic moment of the anion-deficient La0.70Sr0.30MnO2.85 manganite have been measured. It is established, that the magnetic state of the sample studied is a cluster spin glass and it is the result of frustration of exchange Mn3+-O-Mn3+ interactions due to the redistribution of oxygen vacancies. The increase of the magnetic field leads to an increase in the degree of polarization of local spins of manganese. It is established using the magnetic criterion that a phase transition into the paramagnetic state for the anion-deficient La0.70Sr0.30MnO2.85 manganite is a thermodynamic second order phase transition. The causes and mechanism of the magnetic phase separation are discussed.  相似文献   

14.
A change in electric polarization (up to 300 μC/m2) upon magnetic-field suppression of a charge-ordered antiferromagnetic state upon a transition to the ferromagnetic conducting phase (H cr ~ 65–80 kOe at 4.2 K) is discovered in Pr0.6Ca0.4MnO3 and Nd0.6Ca0.4MnO3 single crystals. The transition is also accompanied by a jump in magnetization and magnetostriction. The dependence of the induced polarization sign on the polarity of the electric field in which the sample was preliminarily cooled indicates the existence of spontaneous electric polarization. The effect is the strongest in Nd0.6Ca0.4MnO3 and is weaker by a factor of 5–10 in Pr0.6Ca0.4MnO3, for which the tolerance factor is higher. The observed effect may be associated with recently predicted noncentrosymmetric structures in doped manganites with x ~ 0.5 (see D.V. Efremov, J. van den Brink, and D.I. Khomskii, Nature Materials 3, 853 (2004)), in which e g electrons are not localized upon charge and orbital ordering at one manganese ion, but are distributed among neighboring ions, thus forming an ordered polar dimer structure.  相似文献   

15.
The crystal and magnetic structures of manganite Pr0.7Ba0.3MnO3 have been studied at high pressures of up to 5.1 GPa and temperatures from 10 to 300 K by means of the neutron diffraction. At normal pressure and a temperature T C = 200 K, a ferromagnetic state forms in Pr0.7Ba0.3MnO3. At high pressures P ≥ 1.9 GPa and T < T N ≈ 153 K, a new antiferromagnetic state of A-type have been observed. Under high pressure, the Curie temperature T C increases with the characteristic quantity dT C/dP ≈ 2.4 K/GPa. A possible reason for the appearance of an A-type antiferromagnetic phase in Pr0.7Ba0.3MnO3 at high pressures may be anisotropic uniaxial compression of oxygen octahedra along the b axis of the orthorhombic structure.  相似文献   

16.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

17.
The nature of the low-energy excitations of polycrystalline and nanostructured La0.25Ca0.75MnO3 samples has been analyzed in order to investigate the mechanisms of charge ordering in manganites. It has been found that the electrodynamic response spectra of La0.25Ca0.75MnO3 in the energy range of 0.5 to 90 meV and the temperature range of 5 to 300 K have no resonance features that could be attributed to the collective excitations of the charge-ordered phase. It has been shown that the absorption lines observed at frequencies of 20–40 and 80–100 cm–1 are attributed to usual acoustic phonons becoming optically active owing to the structure phase transition and the appearance of a fourfold superstructure with a quadruple period along the crystallographic a axis. The suppression of the superstructure has been revealed in samples with nanocrystallites (≤40 nm). This suppression indicates a relatively weak coupling of the charge and magnetic order parameters with the phonon subsystem.  相似文献   

18.
The current-voltage characteristics of the polycrystalline substituted lanthanum manganite (La0.5Eu0.5)0.7Pb0.3MnO3 have been measured at temperatures close to the metal-insulator transition temperature and at low temperatures. In both cases, the current-voltage characteristics exhibit nonlinear properties that are strongly dependent on the strength of an applied magnetic field. The mechanisms responsible for the nonlinear properties at these temperatures are found to be different: near the metal-insulator transition, the current-voltage characteristics are determined by the phase layering inside granules, while at low temperatures, they are determined by tunneling of carriers through insulating interlayers of the granules.  相似文献   

19.
40-to 120-nm-thick (001)La0.67Ca0.33MnO3 films grown through laser evaporation on (001)NdGaO3 were studied. The lattice parameters of the La0.67Ca0.33MnO3 films measured in the substrate plane (a=3.851 Å) and along the normal to its surface (a=3.850 Å) practically coincided with that of the pseudocubic neodymium gallate. The unit-cell volume of the La0.67Ca0.33MnO3 film was slightly smaller than that of stoichiometric bulk samples. The position of the maximum in the temperature dependence of electrical resistivity did not depend on the thickness of the La0.67Ca0.33MnO3 film. The negative magnetoresistance (MR≈?0.25, H=0.4 T) of La0.67Ca0.33MnO3 films reached a maximum at 239–244 K.  相似文献   

20.
The atomic and magnetic structures of La0.5Ca0.5CoO3 cobaltite have been studied by the neutron diffraction technique at high pressures of up to 4 GPa in the 10- to 300-K temperature range. The pressure dependences of the structural parameters have been obtained. The Curie temperature increases with the pressure with the coefficient dT C/dP = 1 K/GPa, demonstrating the stability of the ground ferromagnetic (FM) state. The pressure dependence of the ground FM state in La0.5Ca0.5CoO3 is in drastic contrast with that for La1 − x Ca x CoO3 at a lower calcium content (x < 0.3). For the latter compound, the pressure suppressed the ground FM state and a large negative pressure coefficient of the Curie temperature (dT C/dP ∼ −10 K/GPa) was observed. The nature of such a phenomenon is analyzed in the framework of the double exchange model also taking into account the changes in the electron configuration of Co3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号