首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
耦合变形对大范围运动柔性梁动力学建模的影响   总被引:1,自引:0,他引:1  
柔性梁在作大范围空间运动时,产生弯曲和扭转变形,这些变形的相互耦合形成了梁在纵向以及横向位移的二次耦合变量。本文考虑了变形产生的几何非线性效应对运动柔性梁的影响,在其三个方向的变形中均考虑了二次耦合变量,利用弹性旋转矩阵建立了准确的几何非线性变形方程,通过Lagrange方程导出系统的动力学方程。仿真结果表明,在大范围运动情况下,仅在纵向变形中计及了变形二次耦合量的一次动力学模型,与考虑了完全几何非线性变形的模型具有一定的差异。  相似文献   

2.
Based on exact Green strain of spatial curved beam, the nonlinear strain-displacement relation for plane curved beam with varying curvature is derived. Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-α method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.  相似文献   

3.
Sheng  Fangfang  Zhong  Zhengyong  Wang  Keh-Han 《Nonlinear dynamics》2020,101(1):333-359

This paper presents the theory development and numerical implementation of a new gradient-deficient-based ANCF (Absolute Nodal Coordinate Formulation) model applied to perform the nonlinear dynamic analysis of elastic line structures subject to large stretching and deformation. The derivations of model equations, introduced numerical approaches, and result validations are the focuses of this study. Different from the traditional rod theory for small stretching consideration, the present model implements the line structures’ large elongation concepts into both the control mechanisms of constitutive formulations and equations of motion. The effect of external hydrodynamic forces on structures is also included in the model formulations. Based on the conservation of energy, the line model developed in this study covers the variation in strain and takes a full account of the bending effect with large stretching. A finite-element-based implicit scheme according to a modified Newmark-beta method is employed to solve the assembled system equations with unknown variables of nodal position vectors, their tangential derivatives, and strains. Selected cases with dynamic motions, such as nonlinear oscillation of a compound pendulum, free falling of a horizontal elastic beam in air with two different settings of gravity, free falling of a submerged horizontal tether with and without an attached concentrated mass, and a submerged vertical tether with a prescribed translational motion, are simulated to verify the developed model by comparing the results with analytical solutions and published experimental data and numerical results. It is found the present ANCF model, as noticed with good matched results with analytical solutions, measurements and other published solutions, is demonstrated to be able to provide converged and reasonably accurate predictions on the responses of line structures subject to large dynamic motions.

  相似文献   

4.
In this paper, the nonlinear free vibration of the nanotube with damping effects is studied. Based on the nonlocal elastic theory and Hamilton principle, the governing equation of the nonlinear free vibration for the nanotube is obtained. The Galerkin method is employed to reduce the nonlinear equation with the integral and partial differential characteristics into a nonlinear ordinary differential equation. Then the relation is solved by the multiple scale method and the approximate analytical solution is derived. The nonlinear vibration behaviors are discussed with the effects of damping, elastic matrix stiffness, small scales and initial displacements. From the results, it can be observed that the nonlinear vibration can be reduced by the matrix damping. The elastic matrix stiffness has significant influences on the nonlinear vibration properties. The nonlinear behaviors can be changed by the small scale effects, especially for the structure with large initial displacement.  相似文献   

5.
The end shear restraint, which is an un-classical type of end support, has a significant effect on the behavior of elastic composite beams. The principal aim of this paper is to present a numerical model for studying the effect of end shear restraint on static and free vibration behavior of elastic composite beams with various end conditions. The elastic composite beam, considered in this study, is composed of an upper concrete slab and a lower steel beam, connected at the interface by shear transmitting studs. This type of beam is widely used in constructions especially for highway bridges. The three types of end conditions considered in this study are simple, fixed and free supports. The numerical model is based on the combination of transfer matrix and analog beam methods. The field transfer matrices for the element of the elastic composite beam are derived. The present model is applied to the beam systems with and without end shear restraint and the static response and natural frequencies are calculated. the effect of shear stiffness between the upper slab and lower beam is also demonstrated.  相似文献   

6.
刚柔耦合建模理论的实验验证   总被引:22,自引:3,他引:22  
杨辉  洪嘉振  余征跃 《力学学报》2003,35(2):253-256
传统的混合坐标建模理论是零次近似方法,对刚柔耦合问题的描述存在缺陷,研究以一个由中心刚体,柔性梁及末端质量组成的刚柔耦合系统对象,建立了精确的一次近似的刚柔耦合动力学方程,在该模型中计及了结构阻尼及风阻的影响,利用单轴气浮台动力学实验平台,通过与实验数据的比较,说明了传统零次近似方法在某些条件下已不能下确描述柔性的刚性正确性和可靠性。  相似文献   

7.
This paper studies large deflection problem of beam and plates by the finite elementmethod.The elongation of the middle surface caused by its rotation is considered in strain-displacement relations.The higher order terms will be reserved when strain energy iscalculated.The elastic stiffness matrix,linear and nonlinear initial stress stiffness metricesare derived by the principle of minimum potential energy.Examples show that precision willbe properly manifested although the total storage amount and the calculating time are notincreased.The iterative method with co-moving coordinate must be adopted to avoid parasiticrigid body motion.  相似文献   

8.
范纪华  章定国  谌宏 《力学学报》2019,51(5):1455-1465
相比于浮动坐标系法, 绝对节点坐标法(absolute nodal coordinateformulation, ANCF)在处理柔性体非线性大变形问题上具有显著优势,ANCF将单元节点坐标定义在全局坐标系下,采用斜率矢量代替节点转角坐标, 具有常数质量阵,不存在科氏离心力等优点, 然而弹性力阵为非线性项,其求解将比较耗时且占用资源. 据此, 在弹性力求解方法中,引入弹性线方法(elastic line method, ELM),该方法将格林--拉格朗日应变张量定义在中心线上,采用曲率公式来定义弯曲应变, 转角公式来定义扭转应变.同时采用有限元法对三维柔性梁位移场进行离散,求解梁单元常数质量阵、广义刚度阵、广义力阵,进而得到单元的动力学方程, 通过转换矩阵得到三维梁的动力学方程.接着从理论上指出连续介质力学方法(continuum mechanics method,CMM)和弹性线方法在求解弹性力上的不同点, 并编制动力学仿真软件.最后分别采用连续介质力学方法和弹性线方法对柔性单摆以及履带式车辆的动力学问题进行仿真分析,结果表明:弹性线方法能在保证精度的前提下有效提高计算效率.   相似文献   

9.
The literature regarding the free vibration analysis of Bernoulli–Euler and Timoshenko beams under various supporting conditions is plenty, but the free vibration analysis of Reddy–Bickford beams with variable cross-section on elastic soil with/without axial force effect using the Differential Transform Method (DTM) has not been investigated by any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded and semi-rigid connected Reddy–Bickford beam with variable cross-section on elastic soil is carried out by using DTM. The model has six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments in this study. The governing differential equations of motion of the rectangular beam in free vibration are derived using Hamilton’s principle and considering rotatory inertia. Parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive force are incorporated into the equations of motion in order to investigate their effects on the natural frequencies. At first, the terms are found directly from the analytical solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the governing differential equations of the motion. The calculated natural frequencies of semi-rigid connected Reddy–Bickford beam with variable cross-section on elastic soil using DTM are tabulated in several tables and figures and are compared with the results of the analytical solution where a very good agreement is observed.  相似文献   

10.
Chaotic vibrations of a beam with non-linear boundary conditions   总被引:7,自引:0,他引:7  
Forced vibrations of an elastic beam with non-linear boundary conditions are shown to exhibit chaotic behavior of the strange attractor type for a sinusoidal input force. The beam is clamped at one end, and the other end is pinned for the tip displacement less than some fixed value and is free for displacements greater than this value. The stiffness of the beam has the properties of a bi-linear spring. The results may be typical of a class of mechanical oscillators with play or amplitude constraining stops. Subharmonic oscillations are found to be characteristic of these types of motions. For certain values of forcing frequency and amplitude the periodic motion becomes unstable and nonperiodic bounded vibrations result. These chaotic motions have a narrow band spectrum of frequency components near the subharmonic frequencies. Digital simulation of a single mode mathematical model of the beam using a Runge-Kutta algorithm is shown to give results qualitatively similar to experimental observations.  相似文献   

11.
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation (ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore, dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results, while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.  相似文献   

12.
文颖  曾庆元 《计算力学学报》2013,30(6):796-801,814
几何刚度矩阵的推演是结构几何非线性有限元分析的重点和难点之一。推导几何刚度矩阵显式解析表达式成为简化非线性有限元列式,提高分析效率的关键。本文在协同转动法框架下,基于刚体运动法则对四节点二十四自由度的平板壳单元几何刚度矩阵显式解析式进行了推导和讨论;分析了悬臂梁大转动、不同壁厚条件下简支圆柱形屋顶空间大变位两个经典算例。研究结果表明:(1)几何刚度矩阵的显式计算公式不仅为板壳结构几何非线性列式提供了方便而且具有良好的精度;(2)推导的几何刚度矩阵适用于各类型四边形二十四自由度平板壳单元模型;(3)与数值积分相比,采用解析形式的几何刚度矩阵可以显著提高非线性响应计算效率。  相似文献   

13.
采用三阶剪切变形理论,结合有限元法研究了悬臂输流管道的自由振动问题.利用虚功原理建立了输流管系统的有限元方程,同时将悬臂端弹性支承以势能的形式引入到系统方程中,求解了系统前三阶的复频率.分别探讨了流体速度和弹簧刚度对系统复频率实部和虚部的影响,重点分析了弹簧刚度与前三阶固有频率间的关系.在弹性支承刚度为零的特例下,对比了本文结果与Timoshenko梁理论的结果,证明了本文方法的可靠性.研究发现系统固有频率的实部恒为负值,表明一端带有弹性支承的约束形式有利于提高悬臂输流管道自由振动的稳定性;流体的流动对管道振动起到了阻尼作用,在流动速度足够大的情况下,各阶振动固有频率均趋于零;当弹簧刚度为无穷大,且流体速度足够大时,输流管道将发生失稳.  相似文献   

14.
Fan  Yin  Wang  Hai 《Nonlinear dynamics》2017,89(3):1863-1876

This paper investigates the low-velocity impact response of a shear deformable laminated beam which contains both carbon nanotube reinforced composite (CNTRC) layers and carbon fiber reinforced composite (CFRC) layers. The effect of matrix cracks is considered, and a refined self-consistent model is selected to describe the degraded stiffness caused by the damage. The beam including damping effects rests on a two-parameter elastic foundation in thermal environments. Based on a higher-order shear deformation theory and von Kármán nonlinear strain–displacement relationships, the motion equations of the beam and impactor are established and solved by means of a two-step perturbation approach. The material properties of both CFRC layers and CNTRC layers are assumed to be temperature-dependent. To assess engineering application of this hybrid structure, two conditions for outer CNTRC layers and outer CFRC layers are compared. Besides, the effects of the crack density, volume fraction of carbon nanotube, temperature variation, the foundation stiffness and damping on the nonlinear low-velocity impact behavior of hybrid laminated beams are also discussed in detail.

  相似文献   

15.
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal efect. Diferent from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly,based on nonlinear strain–displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach,and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.  相似文献   

16.

In this paper, a nonlinear reduced-order model based on neural networks is introduced in order to model vertical sloshing in presence of Rayleigh–Taylor instability of the free surface for use in fluid–structure interaction simulations. A box partially filled with water, representative of a wing tank, is first set on vertical harmonic motion via a controlled electrodynamic shaker. Accelerometers and load cells at the interface between the tank and an electrodynamic shaker are employed to train a neural network-based reduced-order model for vertical sloshing. The model is then investigated for its capacity to consistently simulate the amount of dissipation associated with vertical sloshing under different fluid dynamics regimes. The identified tank is then experimentally attached at the free end of a cantilever beam to test the effectiveness of the neural network in predicting the sloshing forces when coupled with the overall structure. The experimental free response and random seismic excitation responses are then compared with that obtained by simulating an equivalent virtual model in which the identified nonlinear reduced-order model is integrated to account for the effects of violent vertical sloshing.

  相似文献   

17.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

18.
基于Winkler地基模型和Euler-Bernoulli梁理论,建立了Winkler地基上有限长梁的非线性运动方程。运用Galerkin方法对运动方程进行一阶模态截断,得到了离散的非线性振动方程,然后利用多尺度法求得了该系统3次超谐共振的幅频响应方程及其位移的一阶近似解。为揭示弹性地基上有限长梁的3次超谐共振响应的特性,分别分析了长细比、弹性模量、基床系数、阻尼、密度等主要参数对该系统3次超谐共振幅频响应曲线的影响,并通过与非共振硬激励情况的对比分析了3次超谐共振对系统实际动力反应的影响。研究结果表明:3次超谐共振响应曲线有跳跃和滞后现象;增大阻尼和基床系数均对3次超谐共振的发生有抑制作用;增大外激励幅值,系统3次超谐共振区域增大;3次超谐共振将增大系统的稳态动力响应幅值和加速度。  相似文献   

19.
In this work, a new plane stress element is proposed for the nonlinear static and dynamic analysis of plane stress/plane strain problems. The four node quadrilateral element formulation for the elastic case is extended by introducing a novel hysteretic constitutive relation, based on the Bouc–Wen model of hysteresis. The hysteretic model introduced is directly derived from the governing equations of classical plasticity based on the flow rule and specific hardening law. The stiffness matrix of the element is formulated using the principle of virtual displacements, where the elastic stress–strain relation is substituted by the hysteretic relation proposed. The derived stiffness matrix is expressed as a smooth function of the internal stress field both in the elastic and inelastic regime. The efficiency of the proposed element in the simulation of the cyclic behavior in plane structures is presented through illustrative examples.  相似文献   

20.
In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler–Bernoulli assumptions together with Von Karman’s strain–displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He’s variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the effect of vibration amplitude, elastic coefficients of foundation, axial force, and material inhomogenity are presented for future references.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号