首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
近似黎曼解对高超声速气动热计算的影响研究   总被引:3,自引:1,他引:2  
黎作武 《力学学报》2008,40(1):19-25
高超声速流场计算一般采用TVD型格式,这些格式中,大多采用了不同形式的近似黎曼解. 通过分析和数值验证,论述了激波捕捉格式中近似黎曼解的耗散性质,说明其对高超声速热流计算的影响. 数值实验证明,采用低耗散格式可大大提高热流计算精度,降低热流计算对网格的依赖程度,从而获得精确的热流数值解.   相似文献   

2.
In this paper, an algorithm for chemical non‐equilibrium hypersonic flow is developed based on the concept of energy relaxation method (ERM). The new system of equations obtained are studied using finite volume method with Harten–Lax–van Leer scheme for contact (HLLC). The original HLLC method is modified here to account for additional species and split energy equations. Higher order spatial accuracy is achieved using MUSCL reconstruction of the flow variables with van Albada limiter. The thermal equilibrium is considered for the analysis and the species data are generated using polynomial correlations. The single temperature model of Dunn and Kang is used for chemical relaxation. The computed results for a flow field over a hemispherical cylinder at Mach number of 16.34 obtained using the present solver are found to be promising and computationally (25%) more efficient. The present solver captures physically correct solution as the entropy conditions are satisfied automatically during the computations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A new finite‐volume flow solver based on the hybrid Cartesian immersed boundary (IB) framework is developed for the solution of high‐speed inviscid compressible flows. The IB method adopts a sharp‐interface approach, wherein the boundary conditions are enforced on the body geometry itself. A key component of the present solver is a novel reconstruction approach, in conjunction with inverse distance weighting, to compute the solutions in the vicinity of the solid‐fluid interface. We show that proposed reconstruction leads to second‐order spatial accuracy while also ensuring that the discrete conservation errors diminish linearly with grid refinement. Investigations of supersonic and hypersonic inviscid flows over different geometries are carried out for an extensive validation of the proposed flow solver. Studies on cylinder lift‐off and shape optimisation in supersonic flows further demonstrate the efficacy of the flow solver for computations with moving and shape‐changing geometries. These studies conclusively highlight the capability of the proposed IB methodology as a promising alternative for robust and accurate computations of compressible fluid flows on nonconformal Cartesian meshes.  相似文献   

4.
高超声速气动热环境的数值计算对算法和网格的敏感度极高. 随着高超声速飞行器外形日益复杂, 生成高质量的结构网格时间成本呈指数增加, 难以满足工程应用的需求. 非结构/混合网格因具有很强的复杂外形适应能力, 为了缩短任务周期, 有必要在非结构/混合网格上开展高精度的气动热环境数值计算方法研究. 梯度重构方法是影响非结构/混合网格热流计算精度的重要因素之一. 本文通过引入多维梯度重构方法, 发展了基于常规的非结构/混合网格的高精度热流计算方法, 对典型的高超声速Benchmark算例(二维圆柱)进行了模拟, 并与气动力计算广泛采用的Green-Gauss类方法和最小二乘类方法进行了对比. 计算结果表明, 多维梯度重构方法能有效提高非结构/混合网格热流预测精度, 其鲁棒性和收敛性更好. 最后将多维梯度重构方法应用于常规混合网格的三维圆柱和三维双椭球绕流问题, 得到了与实验值吻合较好的热流计算结果, 展现了良好的应用前景.   相似文献   

5.
The hypersonic flow field over a sphere flying in a ballistic-range is numerically simulated for the purpose of validating a hypersonic chemical equilibrium flow solver. The numerical results obtained are compared with available experimental data on the stand-off distance and the shape of the detached bow shock wave. In the calculation, an adaptive mesh is employed for a crisp capturing of the shock wave. Comparison with the experimental data reveals that the equilibrium flow solver can yield a fairly accurate prediction of the flow field. Received 18 November 1997 / Accepted 10 November 1998  相似文献   

6.
In this paper we study an extension of Osher's Riemann solver to mixtures of perfect gases whose equation of state is of the form encountered in hypersonic applications. As classically, one needs to compute the Riemann invariants of the system to evaluate Osher's numerical flux. For the case of interest here it is impossible in general to derive simple enough expressions which can lead to an efficient calculation of fluxes. The key point here is the definition of approximate Riemann invariants to alleviate this difficulty. Some of the properties of this new numerical flux are discussed. We give 1D and 2D applications to illustrate the robustness and capability of this new solver. We show by numerical examples that the main properties of Osher's solver are preserved; in particular, no entropy fix is needed even for hypersonic applications.  相似文献   

7.
间断Galerkin有限元和有限体积混合计算方法研究   总被引:1,自引:0,他引:1  
通过局部坐标变换而建立的非正交单元间断Galerkin(DG)有限元计算方法计算精度高, 但计算量大、内存需求大;而非结构网格有限体积方法虽然准确计算热流的问题目 前还没有完全解决,但其具有计算速度快和内存需求小的优点. 该研究是将有 限元和有限体积方法的优点结合,发展有限元和有限体积的混合方法. 在物面 附近黏性占主导作用的区域内采用有限元方法进行计算,在远离物面的区域采用快速的有限 体积方法进行计算,在有限元和有限体积方法结合处要保证通量守恒. 通过算例说明有 限元和有限体积混合方法既能保证黏性区域的热流计算精度和流场结构的分辨率,又能 降低内存需求和提高计算效率,使有限元方法应用于复杂外形(实际工程问题)的计 算成为可能.  相似文献   

8.
Cover Image     
A simple, robust, and accurate HLLC-type Riemann solver for the compressible Euler equations at various Mach numbers is built. To cure shock instability of the HLLC solver at strong shocks, a pressure-control technique, which plays a role in limiting the propagation of erroneous pressure perturbation, is proposed. With an all Mach correction method for the compressible Euler system, the proposed method is further extended to compute flow problems at low Mach numbers. The proposed all Mach HLLC-type scheme has been implemented and used to compute a variety of flow problems ranging from hypersonic compressible to low Mach incompressible flow regimes. Various numerical results demonstrate that the obtained all Mach HLLC-type scheme is both accurate and stable for all speed ranges.  相似文献   

9.
A new 2D parallel multispecies polyatomic particle–based hybrid flow solver is developed by coupling the Direct Simulation Monte Carlo (DSMC) method with a novel Dynamic Collision Limiter (DCL) approach to solve multiscale transitional flows. The hybrid DSMC‐DCL solver can solve nonequilibrium multiscale flows with length scales ranging from continuum to rarefied. The DCL method, developed in this work, dynamically assigns different number of collisions in cells, which is based on the local value of K‐S parameter such that the number of collisions per time step is limited in near‐equilibrium flow regions. Present hybrid solver uses the Kolmogorov‐Smirnov statistical test as the continuum breakdown parameter, based on which, the solution domain is decomposed into near‐equilibrium and nonequilibrium flow regions. Direct Simulation Monte Carlo is used where nonequilibrium flow regions are encountered, while the DCL method is used where flow regions are found to be in near‐equilibrium state. In this work, we have studied hypersonic flow of nitrogen over a blunt body with an aerospike and supersonic flow of argon through a micronozzle. The results obtained by the hybrid DSMC‐DCL solver are compared and shown to agree well with the experimental data and with those obtained from DSMC, with significant savings in the computational cost.  相似文献   

10.
高超声速飞行器关键部位气动热计算   总被引:3,自引:0,他引:3  
运用快速算法对高超声速飞行器外表面的一些关键部位经受的气动热环境进行计算分析。在理论和经验公式的基础上,利用轴对称比拟法考虑攻角影响,采用局部相似性解及参考焓等方法确定飞行器有攻角再入的表面气动加热,发展了一套高超声速飞行器关键部位气动热的计算方法。以钝锥为算例对计算方法进行了验证,结果表明,本文所述方法具有较高的效率和精度。  相似文献   

11.
An unsteady incompressible Navier–Stokes solver that uses a dual time stepping method combined with spatially high‐order‐accurate finite differences, is developed for large eddy simulation (LES) of turbulent flows. The present solver uses a primitive variable formulation that is based on the artificial compressibility method and various convergence–acceleration techniques are incorporated to efficiently simulate unsteady flows. A localized dynamic subgrid model, which is formulated using the subgrid kinetic energy, is employed for subgrid turbulence modeling. To evaluate the accuracy and the efficiency of the new solver, a posteriori tests for various turbulent flows are carried out and the resulting turbulence statistics are compared with existing experimental and direct numerical simulation (DNS) data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A new three-component accelerometer force balance has been designed, calibrated and tested in hypersonic shock tunnel (HST2) of Indian Institute of Science. The newly designed balance is able to measure aerodynamic forces (within test time of one millisecond) on test models at angles of attack from 0 to 12°. Two models, a blunt cone with after body and a blunt cone with after body and frustum are used to establish the accuracy of the force balance. The tests were conducted for the above two configurations with a constant Mach number of 8 and total enthalpy of 2.0 MJ/kg. The effectiveness of the balance is demonstrated by comparing the forces and moments of measured data with AGARD models. The flow fields around the test model are simulated using a 3D axisymmetric Navier–Stokes solver and the simulated results were compared with the measured values. Measured and computed force data are matched within ±10% for two different models tested here. The accuracy of the force balance is also estimated with the Newtonian theory and the values are approximately ±10% for the axial component and ±8% for the normal and pitching moment components.   相似文献   

13.
A fourth‐order accurate solution method for the three‐dimensional Helmholtz equations is described that is based on a compact finite‐difference stencil for the Laplace operator. Similar discretization methods for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions. Here, the complicated issue of imposing Neumann boundary conditions is described in detail. The method is then applied to model Helmholtz problems to verify the accuracy of the discretization method. The implementation of the solution method is also described. The Helmholtz solver is used as the basis for a fourth‐order accurate solver for the incompressible Navier–Stokes equations. Numerical results obtained with this Navier–Stokes solver for the temporal evolution of a three‐dimensional instability in a counter‐rotating vortex pair are discussed. The time‐accurate Navier–Stokes simulations show the resolving properties of the developed discretization method and the correct prediction of the initial growth rate of the three‐dimensional instability in the vortex pair. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
基于动态混合网格的不可压非定常流计算方法   总被引:1,自引:0,他引:1  
鱼类、昆虫等运动速度较低,对它们的数值模拟需要解决不可压问题.虚拟压缩方法通过在连续性方程中加入压强对虚拟时间的偏导数,从而把压力场和速度场耦合起来,解决了不可压缩流的计算问题.基于动态混合网格技术,利用双时间步方法耦合虚拟压缩方法来解决非定常不可压缩流的计算问题.为了加快每一虚拟时间步内的收敛速度,子迭代采用了高效的块LU-SGS方法,并且耦合了基于混合网格的多重网格方法.利用该方法数值模拟了不同雷诺数下的静止圆柱、振荡圆柱的绕流,得到了与实验和他人计算一致的结果.  相似文献   

15.
A numerical model for the compressible Navier–Stokes equations using local mesh embedding is presented. The model solves for three-dimensional turbulent flow using an algebraic mixing length model of turbulence. The technique of control volume upwinding is used to produce a novel treatment, whereby the hanging nodes on the mesh interfaces are left with null control volumes. This yields an efficient discretization scheme which ensures second-order accuracy, flux conservation and stability at the mesh interfaces, whilst retaining a simple interpolative treatment for the hanging nodes. The discrete flow equations are solved using the semi-implicit pressure correction method. The accuracy of the embedded mesh solver is demonstrated by modelling the three-dimensional flow through a cascade of turbine vanes at design and off-design conditions. Mesh embedding gives a saving of 48% in the number of nodes. The embedded mesh solutions compare well with fine structured mesh solutions and experimental measurements. The capability of the embedded mesh solver to perform solution adaptive calculations is demonstrated using a two-dimensional mid-height section of the cascade at the off-design flow conditions.  相似文献   

16.
In this paper, the extension of an upwind least‐square based meshless solver to high Reynolds number flow is explored, and the properties of the meshless solver are analyzed both theoretically and numerically. Existing works have verified the meshless solver mostly with inviscid flows and low Reynolds number flows, and in this work, we are interested in the behavior of the meshless solver for high Reynolds number flow, especially in the near‐wall region. With both theoretical and numerical analysis, the effects of two parameters on the meshless solver are identified. The first one is the misalignment effect caused by the significantly skewed supporting points, and it is found that the meshless solver still yields accurate prediction. It is a very interesting property and is opposite to the median‐dual control volume based vertex‐centered finite volume method, which is known to give degraded result with stretched triangular/tetrahedral cells in the near‐wall region. The second parameter is the curvature, and according to theoretical analysis, it is found in the region with both large aspect ratio and curvature, and the streamwise residual is less affected; however, the wall‐normal counterpart suffers from accuracy degradation. In this paper, an improved method that uses a meshless solver for the streamwise residual and finite difference for wall‐normal residual is developed. This method is proved to be less sensitive to the curvature and provides improved accuracy. This work presents an understanding of the meshless solver for high Reynolds number flow computation, and the analysis in this paper is verified with a series of numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A multi‐resolution analysis (MRA) is proposed for efficient flow computation with preserving the high‐order numerical accuracy of a conventional solver. In the MRA process, the smoothness of a flow pattern is assessed by the difference between original flow property values, and the values approximated by high‐order interpolating polynomial in decomposition. Insignificant data in smooth region are discarded, and flux computation is performed only where crucial features of a solution exist. The reduction of expensive flow computation improves the overall computational efficiency. In order to maintain the high‐order accuracy, modified thresholding procedure restricts the additional error introduced by the thresholding below the order of accuracy of a conventional solver. The practical applicability of the MRA method is validated in various continuous and discontinuous flow problems. The MRA stably computes the Euler equations for continuous and discontinuous flow problems and maintains the accuracy of a conventional solver. Overall, it substantially enhances the computational efficiency of the conventional third‐order accurate solver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Newton's method is developed for solving the 2‐D Euler equations. The Euler equations are discretized using a finite‐volume method with upwind flux splitting schemes. Both analytical and numerical methods are used for Jacobian calculations. Although the numerical method has the advantage of keeping the Jacobian consistent with the numerical residual vector and avoiding extremely complex analytical differentiations, it may have accuracy problems and need longer execution time. In order to improve the accuracy of numerical Jacobians, detailed error analyses are performed. Results show that the finite‐difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A method is developed for calculating an optimal perturbation magnitude that can minimize the error in numerical Jacobians. The accuracy of the numerical Jacobians is improved significantly by using the optimal perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of the flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated only for neighbouring cells. A sparse matrix solver that is based on LU factorization is used. Effects of different flux splitting methods and higher‐order discretizations on the performance of the solver are analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
针对不同气体模型对高超声速飞行器喷流反作用控制系统(RCS)热喷干扰流场模拟的计算效率和准确性问题, 基于喷流燃气物理化学模型, 通过数值求解含化学反应源项的三维N-S方程, 建立了飞行器RCS热喷干扰流场数值模拟方法, 分别采用化学反应流、反应冻结流、二元异质流以及空气喷流四种气体模型开展了典型外形热喷干扰流场的数值模拟, 研究了不同气体模型对热喷干扰流场结构、飞行器气动力热特性的影响, 分析了不同马赫数、飞行高度下的变化规律. 研究表明: 化学反应流模型计算精度较高, 计算与风洞试验数据的吻合程度优于其他三种简化模型; 在本文的低空条件下, 采用简化模型进行热喷干扰流场数值模拟, 会低估分离区大小, 使飞行器气动力特性预测出现偏差, 同时也会低估表面热环境, 对防热系统设计不利, 随着马赫数增加, 简化模型对气动力热特性预估的误差进一步增大, 同时不同简化模型之间的差异也进一步增大; 飞行高度较高时, 模型之间的差异减小, 此时可采用简化模型进行计算以提高计算效率. 本文的研究结果可为飞行器热喷干扰流场数值模拟及喷流反作用控制系统设计提供参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号