首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The unsteady flow of an incompressible fractional Maxwell fluid between two infinite coaxial cylinders is studied by means of integral transforms.The motion of the fluid is due to the inner cylinder that applies a time dependent torsional shear to the fluid.The exact solutions for velocity and shear stress are presented in series form in terms of some generalized functions.They can easily be particularized to give similar solutions for Maxwell and Newtonian fluids.Finally,the influence of pertinent parameters on the fluid motion,as well as a comparison between models,is highlighted by graphical illustrations.  相似文献   

2.
M. Kamran  M. Imran  M. Athar 《Meccanica》2013,48(5):1215-1226
In this research article, the unsteady rotational flow of an Oldroyd-B fluid with fractional derivative model through an infinite circular cylinder is studied by means of the finite Hankel and Laplace transforms. The motion is produced by the cylinder, that after time t=0+, begins to rotate about its axis with an angular velocity Ωt p . The solutions that have been obtained, presented under series form in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The corresponding solutions that have been obtained can be easily particularized to give the similar solutions for Maxwell and Second grade fluids with fractional derivatives and for ordinary fluids (Oldroyd-B, Maxwell, Second grade and Newtonian fluids) performing the same motion, are obtained as limiting cases of general solutions. The most important things regarding this paper to mention are that (1) we extracted the expressions for the velocity field and the shear stress corresponding to the motion of Second grade fluid with fractional derivatives as a limiting case of our general solutions corresponding to the Oldroyd-B fluid with fractional derivatives, this is not previously done in the literature to the best of our knowledge, and (2) the expressions for the velocity field and the shear stress are in the most simplified form, and the point worth mentioning is that these expressions are free from convolution product and the integral of the product of the generalized G-functions. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

3.
An initial value investigation is made of the motion of an incompressible, viscous conducting fluid with embedded small spherical particles bounded by an infinite rigid non-conducting plate. Both the plate and the fluid are in a state of solid body rotation with constant angular velocity about an axis normal to the plate. The flow is generated in the fluid-particle system due to non-torsional oscillations of a given frequency superimposed on the plate in the presence of a transverse magnetic field. The operational method is used to derive exact solutions for the fluid and the particle velocities, and the wall shear stress. The small and the large time behaviour of the solutions is discussed in some detail. The ultimate steady-state solutions and the structure of the associated boundary layers are determined with physical implications. It is shown that rotation and magnetic field affect the motion of the fluid relatively earlier than that of the particles when the time is small. The motion for large times is set up through inertial oscillations of frequency equal to twice the angular velocity of rotation. The ultimate boundary layers are established through inertial oscillations. The shear stress at the plate is calculated for all values of the frequency parameter. The small and large-time behaviour of the shear stress is discussed. The exact solutions for the velocity of fluid and the wall shear stress are evaluated numerically for the case of an impulsively moved plate. It is found that the drag and the lateral stress on the plate fluctuate during the non-equilibrium process of relaxation if the rotation is large. The present analysis is very general in the sense that many known results in various configurations are found to follow as special cases.  相似文献   

4.
In this note, the exact solutions of velocity field and associated shear stress corresponding to the flow of second-grade fluid in a cylindrical pipe, subject to a sinusoidal shear stress, are determined by means of Laplace and finite Hankel transform. These solutions are written as sum of steady-state and transient solutions, and they satisfy governing equations and all imposed initial and boundary conditions. The corresponding solutions for the Newtonian fluid, performing the same motion, can be obtained from our general solutions. At the end of this note, the effects of different parameters are presented and discussed by showing flow profiles graphically.  相似文献   

5.
This paper deals with the study of unsteady flow of a Maxwell fluid with fractional derivative model, between two infinite coaxial circular cylinders, using Laplace and finite Hankel transforms. The motion of the fluid is produced by the inner cylinder that, at time t = 0+, is subject to a time-dependent longitudinal shear stress. Velocity field and the adequate shear stress are presented under series form in terms of the generalized G and R functions. The solutions that have been obtained satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Maxwell and Newtonian fluids are obtained as limiting cases of general solutions. Finally, the influence of the pertinent parameters on the fluid motion as well as a comparison between the three models is underlined by graphical illustrations.  相似文献   

6.
The velocity field and the adequate tangential stresses corresponding to the unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate are established by means of Fourier sine transforms. The solutions corresponding to Maxwell, second grade and Newtonian fluids, performing the same motion, appear as limiting cases of the solutions obtained here. In the absence of the side walls, namely when the distance between walls tends to infinity, all solutions that have been determined reduce to those corresponding to the flow over an infinite plate. Finally, for comparison, the velocity field at the middle of the channel as well as the shear stress on the bottom wall is plotted as a function of y for several values of t and of the material constants. The influence of the side walls on the motion of the fluid is also emphasized by graphical illustrations.  相似文献   

7.
Summary The Rayleigh problem or impulsive motion of a flat plate has been solved using a perturbation scheme when the surrounding fluid is representable by the constitutive equations of Oldroyd or Coleman and Noll. The shear stress and normal stress at the wall were expressed analytically for this unsteady motion. Further, an exact solution of the equations was found for a special case of the constitutive equations.The motion of the fluid above a harmonically oscillating plate or the Stokes problem has been determined for a special non-Newtonian fluid. The penetration of the shear wave into the fluid, the energy dissipation, the velocity profiles and the shear and normal stresses at the wall were expressed and compared to an equivalent Newtonian fluid.Some of the features of these non-Newtonian fluids were examined in simple shearing flows, and techniques to calculate some of the material constants discussed.  相似文献   

8.
In this note the velocity field and the adequate shear stress corresponding to the unsteady flow of a fractional Maxwell fluid due to a constantly accelerating circular cylinder have been determined by means of the Laplace and finite Hankel transforms.The obtained solutions satisfy all imposed initial and boundary conditions.They can easily be reduced to give similar solutions for ordinary Maxwell and Newtonian fluids.Finally,the influence of pertinent parameters on the fluid motion,as well as a comparison between models,is underlined by graphical illustrations.  相似文献   

9.
Exact analytical solutions for magnetohydrodynamic (MHD) flows of an incompressible second grade fluid in a porous medium are developed. The modified Darcy's law for second grade fluid has been used in the flow modelling. The Hall effect is taken into account. The exact solutions for the unsteady flow induced by the time-dependent motion of a plane wall between two side walls perpendicular to the plane has been constructed by means of Fourier sine transforms. The similar solutions for a Newtonian fluid, performing the same motion, appear as limiting cases of the solutions obtained here. The influence of various parameters of interest on the velocity and shear stress at the bottom wall has been shown and discussed through several graphs. A comparison between a Newtonian and a second grade fluids is also made.  相似文献   

10.
The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid, between two infinite coaxial circular cylinders, are determined by applying the Laplace and finite Hankel transforms. Initially the fluid is at rest, and at time t = 0+, the inner cylinder suddenly begins to translate along the common axis with constant acceleration. The solutions that have been obtained are presented in terms of generalized G functions. Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions. The corresponding solutions for ordinary second grade and Newtonian fluids are obtained as limiting cases of the general solutions. Finally, some characteristics of the motion, as well as the influences of the material and fractional parameters on the fluid motion and a comparison between models, are underlined by graphical illustrations.  相似文献   

11.
The article describes the unsteady motion of viscoelastic fluid for a Maxwell model with fractional derivatives. The flow is produced by cylinder, considering time dependent quadratic shear stress ft2 on Maxwell fluid with fractional derivatives. The fractional calculus approach is used in the constitutive relationship of Maxwell model. By applying Laplace transform with respect to time t and modified Bessel functions, semianalytical solutions for velocity function and tangential shear stress are obtained. The obtained semianalytical results are presented in transform domain, satisfy both initial and boundary conditions. Our solutions particularized to Newtonian and Maxwell fluids having typical derivatives. The inverse Laplace transform has been calculated numerically. The numerical results for velocity function are shown in Table by using MATLAB program and compared them with two other algorithms in order to provide validation of obtained results. The influence of fractional parameters and material constants on the velocity field and tangential stress is analyzed by graphs.  相似文献   

12.
This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.  相似文献   

13.
Solutions are derived for steady-state motion of a singularity class, which includes point sources and dislocations, through a medium in which the elastic stress-field can evolve with time due to the diffusion of an internal second-phase species, such as a pore-fluids and lattice impurity concentrations in a crystalline solid, or the transfer of heat. The technique is to integrate the known influence functions for a stationary singularity. Attention is focused on the most tractable aspect, namely the stress field on the trajectory of motion: this suffices for simulation of growing shear and tensile fractures (e.g. in a porous fluid-saturated solid). Continuous densities of fluid sources and point discontinuities (dislocations) are suitably distributed (as determined by solving the resulting singular integral equations) to satisfy solid stress and fluid pressure or flow conditions on the fracture surfaces. Alternative methods for finding the complete dislocation influence function are discussed and comparisons with existing source solutions are made. Substantial stabilization effects are found in fracture propagation.  相似文献   

14.
Generalizing Navier’s partial slip condition, the flow due to a rough or striated plate moving in a rotating fluid is studied. It is found that the motion of the plate, the fluid surface velocity, and the shear stress are in general not in the same direction. The solution is extended to the case of finite depth, or Couette slip flow in a rotating system. In this case an optimum depth for minimum drag is found. The solutions are also closed form exact solutions of the Navier–Stokes equations. The results are fundamental to flows with Coriolis effects.  相似文献   

15.
Unsteady flow of an Oldroyd fluid between two coaxial circular cylinders is investigated, the fluid being set in motion as the inner cylinder moves from rest for a certain period with linearly growing speed and then stops suddenly. The Laplace transform technique is used to derive the solution. For the case when the gap between the cylinders is small, a simplified solution is obtained. The expression for the shear stress on the wall of the outer cylinder is obtained and particular cases are discussed.  相似文献   

16.
The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation. The single osteon is modeled as a saturated poroelastic cylinder. Solid skeleton is regarded as a poroelastic transversely isotropic material. To get near-realistic results, both the interstitial fluid and the solid matrix are regarded as compressible. Blood pressure oscillation in the Haverian canal is considered. Using the poroelasticity theory, an analytical solution of the pore fluid pressure is obtained. Assuming the fluid in canaliculi is incompressible, analytical solutions of fluid flow velocity and fluid shear stress with the Navier-Stokes equations of incompressible fluid are obtained. The effect of various parameters on the fluid flow velocity and fluid shear stress is studied.  相似文献   

17.
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.  相似文献   

18.
When Bingham fluid is in motion, plugged flow often occurs at places far from the boundary walls. As there is not a decisive formula of constitutive relation for plugged flow, in some problems the solutions obtained may be indefinite. In this paper, annular flow and pipe flow are discussed, and unique solution is obtained in each case by utilizing the analytic property of shear stress. The solutions are identical in form with the commonly used formula for the pressure drop of mud flow in petroleum engineering.  相似文献   

19.
An initial value investigation is made of the motion of an incompressible viscous conducting fluid with embedded small spherical particles bounded by two infinite rigid non-conducting plates. The flow is generated in the fluid-particle system due to rectilinear oscillations of given frequencies superimposed on the plates in presence of an external transverse magnetic field. The operational method is used to derive exact solutions for the fluid and the particle velocities and the wall shear stress. It is shown that the effect of the dust particles on the fluid velocity depends on the time periods of the oscillating plates. When the time-periods are small, i.e., when the plates oscillate with high frequency, the fluid motion is found to be retarded by the particles. However, when the plates oscillate with larger time periods (smaller frequencies), the fluid velocity is increased by the presence of the particles at the early stage of the motion, and this effect persists until the equilibrium is reached when the particles exert their influence to resist the flow.  相似文献   

20.
The steady-state, similarity solutions of the flow of an upper-convected Maxwell fluid through a tube with a porous wall are constructed by asymptotic and numerical analyses as functions of the direction of flow through the tube, the amount of elasticity in the fluid, as measured by the Deborah number De, and the degree of fluid slip along the tube wall. Fluid slip is assumed to be proportional to the local shear stress and is measured by a slip parameter β that ranges between no-slip (β = 1) and perfect slip (β = 0). The most interesting results are for fluid injection into the tube. For β = 1, the family of flows emanating from the Newtonian limit (De = 0) has a limit point where it turns back to lower values of De. These solutions become asymptotic to De = 0) and develop an O(De) boundary layer near the tube wall with singularly high stresses matched to homogeneous elongational flow in the core. This solution structure persists for all nonzero values of the slip parameter. For β ≠ 1, a family of exact solutions is found with extensional kinematics, but nonzero shear stress convected into the tube through the wall. These flows differ for low De from the Newtonian asymptote only by the absence of the boundary layer at the tube wall. Finite difference calculations evolve smoothly between the Newtonian-like and extensional solutions because of approximation error due to under-resolution of the boundary layer. The radial gradient of the axial normal stress of the extensional flow is infinite at the centerline of the tube for De > 1; this singularity causes failure of the finite difference approximations for these Deborah numbers unless the variables are rescaled to take the asymptotic behavior into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号