首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of prompt gamma activation analysis (PGAA) as a method for detection of the intestinal rare earth marker, samarium, has been evaluated by comparison with thermal neutron activation analysis (NAA). PGAA detection has significant advantages with respect to its higher reaction cross section and possible rapid experimental turnaround time. Serious disadvantages are lower neutron fluxes available to the target and nonavailability of numerous PGAA facilities. Results of the technique comparisons are generally very good. Pony fecal concentrations of samarium in samples obtained at various times after administration of a marked meal were measured by both techniques. In only one sample did results of the methods differ by more than the experimental errors involved.  相似文献   

2.
A novel approach is implemented to alleviate some persistent problems in neutron capture prompt gamma activation analysis (PGAA). Detection sensitivities of PGAA are often restricted by the following factors: poor signal to noise ratios, interferences from background signals, and, in some cases, overlapping energy lines from different origins, namely ultra short-lived decay lines interfering with prompt decay. Timing the gamma-ray acquisition with the actual capture events using a pulsed beam of cold neutrons allows discrimination between prompt and delayed emissions from a sample source as well as against background events. Coincidence gating selects the prompt gamma-ray emissions. Contributions of background capture gamma-rays are suppressed because of different flight times of neutrons to the sources of background radiation, providing a reduction in direct gamma-ray interferences. Anti-coincidence gating allows measurement of only decay radiation that originates from short-lived activated states of the nuclides after capture. Spectra of decaying nuclides are free of interfering prompt activities, as well as have lower continuum background from Compton scattering of high-energy prompt gamma-rays in the detector. The measurements provide the opportunity to use ultra-short half-life nuclides for analytical purposes, no sample transfer times are lost, and repetitive activation and counting cycles are achieved with the use of pulsed neutron beams.  相似文献   

3.
Summary Facilities and methods for INAA of large samples (up to 30 kg) have been developed and successfully tested at IRI, Delft. The methods encompass corrections for neutron self shielding in an isotropic neutron field and gamma self-absorption. The sample’s neutron absorption and scattering characteristics are determined by monitoring the neutron fluence rate around the sample and comparing the neutron densities measured with unperturbed fluence rates. We report on the possibility of developing similar methods for PGNAA. Relative self-shielding factors were measured as well as obtained from Monte Carlo computations. The agreement is good except for the most extreme case, with respect to absorption, attempted (CCl4).  相似文献   

4.
Boron concentration has been determined in groundwater samples, collected from Khuchch, Gujarat, India, by prompt gamma neutron activation analysis (PGNAA) after selective separation and pre-concentration by solvent extraction with 10% 2-ethyl hexane 1,3-diol in CHCl3. Solvent extraction separation helped to eliminate the interfering elements in PGNAA determination of boron. The sensitivity of PGNAA is found to be 18.83 cps/mg B based on the slope of a calibration plot obtained by carrying out measurements on synthetic boric acid samples containing boron in the range of 30–150 μg. Detection limit of the method is 0.2 μg/g counted for 35,000 seconds at a sample size of 15 gram. The precision (relative standard deviation at 1σ level) and accuracy of the method is 5%. The analytical results of the present method agreed well with well-established spectrophotometric determination of boron as boron-curcumin complex and inductively coupled plasma atomic emission spectroscopy (ICP-AES).  相似文献   

5.
6.
An instrument for prompt gamma-ray activation analysis is now in operation at the NIST Cold Neutron Research Facility (CNRF). The cold neutron beam is relatively free of contamination by fast neutrons and reactor gamma rays, and the neutron fluence rate is 1.5·108 cm–2·s–1 (thermal equivalent). As a result of a compact target-detector geometry the sensitivity is better by a factor of as much as seven than that obtained with an existing thermal instrument, and hydrogen background is a factor of 50 lower. We have applied this instrument to multielement analysis of the Allende meteorite and other materials.  相似文献   

7.
8.
The determination of the hydrogen concentrations in coal and metal samples were investigated by using the PGAA system at the HANARO Research Reactor, KAERI. The calibration curve of the hydrogen concentration was obtained from a standard sample and the effects of the interference peaks near the gamma-energy region of hydrogen were investigated. The background in the hydrogen peak of a prompt gamma-ray spectrum was measured for the sample chamber and shielding materials of an atmospheric state. The combined uncertainties estimated for the analysis procedure were in the range of 4–5%. Two kinds of certified reference materials, NIST SRM 1632c (Coal), NIST SRM 173c (Titaniumbase Alloy) and NIST SRM 2453 (Titanium Alloy) were used to verify the accuracy and precision of the measurement. The relative error was in the range of 3–6% and the relative standard deviation were less than 4%.  相似文献   

9.
10.
Summary The new PGAA facility using diffracted neutron beam was developed in Korea. The basic characteristics of the facility were studied in detail. A general formalism of the k0 factor as extended to non-1/v absorber and arbitrary neutron spectrum was discussed and the actual data for Cd, Sm, Eu, Gd have been measured and determined successfully owing to the simple nature of the diffracted neutron spectrum. The k0 factors for B, N, Si, P, S and Cl were also determined and showed consistent results with previously reported ones. At an early stage, feasibility of boron concentration analysis and measurement of thermal neutron capture cross sections has been studied. The PGAA facility is now open to users. A considerable amount of beam time is already dedicated to studies on the elemental analysis.  相似文献   

11.
A 1.85×1011 Bq (5Ci) Am/Be neutron source is being used to investigate the feasibility of applying the absolute method in the elemental analysis of bulk samples by instrumental neutron activation making use of prompt and delayed gamma rays. Among the different factors which might contribute to variations in sensitivity or in the uncertainly associated with the elemental concentration is the presence of hydrogen in the sample. It is the purpose of this study to examine whether the presence of water in bulk samples such as landfill waste produces significant variations in measured elemental concentrations and if so, requires samples to be dried, which can be a time consuming and expensive process. The effect of hydration of samples on the sensitivity of ten elements has there fore been investigated. Samples with different water concentrations in a fixed volume and shape were prepared and used in the analysis in order to obtain a measure and an understanding of the effects involved.  相似文献   

12.
Journal of Radioanalytical and Nuclear Chemistry - Complementary neutron-based elemental analytical and imaging methods, i.e. position sensitive prompt gamma activation analysis and neutron...  相似文献   

13.
瞬发γ活化成像技术基于瞬发γ射线中子活化分析,结合准直测量或者伴随粒子测量手段,以实现对样品内部中元素位置分布的测量。当前大多数相关研究都是基于大型中子源开展的,这限制了该技术的应用场景,可移动小型化中子源是该技术现场应用的必然要求。基于可移动中子源的瞬发伽马活化成像技术按照准直方式可分为基于单孔准直、编码孔准直及伴随粒子测量三类,本文对其技术原理、研究进展及仍存在的问题进行介绍与讨论。目前的技术在空间分辨率上还需要进一步提升,未来将进一步结合图像处理算法提高成像质量并降低测量时间。  相似文献   

14.
The restart of the recently upgraded research reactor in Budapest is foreseen at the end of this year. A number of fast, thermal and cold neutron beams will serve for research, industrial and educational activities. One of the cold neutron guide end positions will be utilized for neutron capture prompt gamma-ray activation analysis (PGAA). Further development of the PGAA method as well as new applications in environmental research, biology and medicine are planned.  相似文献   

15.
Developing a better understanding of xenon transport through porous systems is critical to predicting how this gas will enter the atmosphere after a below ground nuclear weapons test. Radioxenon monitoring is a vital part of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System. This work details the development of prompt gamma activation analysis for measuring the diffusion rates of xenon and argon gases through a porous medium. The University of Texas at Austin maintains a prompt gamma activation analysis facility with a peak neutron flux of ~1.5 × 107 cm−2 s−1 and a beam diameter of 1 cm. Due to the relatively large prompt gamma cross sections of many stable xenon isotopes at thermal and sub-thermal neutron energies, prompt gamma activation analysis is a suitable technique for in situ non-destructive analysis of natural xenon. A test chamber has been designed and constructed to utilize prompt gamma activation analysis to measure xenon and argon diffusion through geological materials (e.g., sand, soil, etc.). Initial experiments have been conducted to determine the detection limits for stable gas measurements. The results from these experiments will be utilized to benchmark parts of a xenon transport model that is being used to determine diffusion coefficients for xenon and argon.  相似文献   

16.
The off-line γ-counting of in-beam activated radionuclides has been explored to extend the detection capabilities of prompt gamma activation analysis (PGAA). Such combination of the prompt measurement with a subsequent decay-counting is feasible if radionuclides with half-lives of minutes or hours are produced in the sample during neutron irradiation. Thanks to the simpler spectrum and the higher counting efficiency of decay counting, both selectivity and sensitivity can be improved. The pros and cons of the proposed method have been demonstrated on a series of industry-related measurements.  相似文献   

17.
A previous study on the determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt gamma activation analysis (CNPGAA) demonstrates that the results of numerous cattail samples showed favorable comparison to results from an elemental analyzer (EA) for C and N. However, the results for P overestimated the results from a UV-VIS spectrophotometer because of the interference of chlorine existing in cattail collected from an estuarine environment. To compare to CNPGAA, a method for the determination of C, N, and P in cattail using thermal neutron prompt gamma activation analysis (TNPGAA) has been developed in the TNPGAA facility at the National Institute of Standards and Technology (NIST) and evaluated through the analysis of standard reference materials (SRMs).  相似文献   

18.
Prompt gamma activation analysis (PGAA) is a nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. The principle of PGAA technique is based on detection of captured gamma-ray emitted from an analytical sample while being irradiated with neutrons. Use of a cold neutron beam guide greatly reduces the gamma-ray background at the analytical sample while maintaining a neutron capture rate is comparable to that of standard thermal neutron PGAA. A new cold neutron induced prompt gamma activation analysis (CN-PGAA) system has been under construction since April of 2009 at the HANARO Cold Neutron Building (KAERI, Republic of KOREA). In this study, the Compton suppression factor of the CN-PGAA system was estimated to be 5.5 using a 60Co radioactive source in conjunction with the MCNPX simulations. Several parameters of the CN-PGAA system were studied to estimate and optimize the performance of the system: scintillation material in the guarded detector of a Compton suppression spectrometer (CSS); the relative positions of the HPGe detector and annular detector; and the distance between the HPGe detector and back catcher BGO detectors of the CSS. In addition, the neutron ray-trace simulation package, McStas, was adopted to predict the neutron flux and wavelength distribution at the end of the cold neutron beam guide. These results served as input for the MCNPX simulation of the CN-PGAA system.  相似文献   

19.
Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed.  相似文献   

20.
The PGAA facility at the Budapest Research Reactor has been continually upgraded and developed since its start-up in 1996, as a result of which its performance has improved considerably. The installation of the cold neutron source, the partial change to supermirror neutron guides and their realignment increased the flux by almost two orders of magnitude. The data acquisition has been modernized as well; digital spectrometers were tested and implemented in novel forms of gamma-ray spectrum collection. This year a higher-efficiency HPGe detector and a new data acquisition module were put into operation. Most recently all the neutron guides were changed to supermirror-coated ones to further increase the neutron flux. The improved evaluation software makes possible a more reliable elemental analysis of the samples. In this progress report these developments are critically reviewed. The characteristics of the latest system are also described. It is the first time that a set of new partial gamma-ray production cross sections are presented, which are based on the new intensity values of 14N(n,γ)15N calibration standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号