首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of a pneumatic tyre as a system with an infinite number of degrees of freedom is proposed, when its surface is represented by the deformed surface of a torus. Using a number of hypotheses a functional of the potential energy of the deformations of the tyre is obtained as a function of the deformations of its tread. A complete system of equations of motion is obtained, assuming that the wheel rolls without slipping in the area of contact of the tread with the plane, with respect to the previously unknown part of the tread. In two special cases of the rolling of a wheel with breakaway and on a banking, all the characteristics of the motion (the contact area, the tyre deformation, and the forces and moments applied to the disc of the wheel) are obtained.  相似文献   

2.
Many papers are concerned with the dynamics of a rigid body with a cavity filled with liquid (see the bibliography in [1]). The present paper deals with the motion of a rigid body having a cavity partly filled with a viscous incompressible liquid, and having a free surface. The shape of the cavity is arbitrary. The problem is considered in a linear formulation. The oscillations of the body with respect to its center of inertia and the motion of the liquid in the cavity are assumed small. The viscosity of the liquid is considered low. The solution of the problem of the oscillations of a body with a cavity partly filled with an ideal liquid is used as an initial approximation [1 to 6]. The viscosity is taken into consideration by the boundary layer method used before in similar problems [1 and 7 to 10). General equations are derived for the dynamics of a body filled with a liquid, for an arbitrary form of cavity. The coefficients of those integro-differential equations depend only on the solution of the problem of the oscillations of a body with a cavity of the given form filled with an ideal liquid. Since the corresponding problem has been solved for cavities of many forms [1 to 6, 11 and 12] in the case of an ideal liquid, the determination of the characteristic coefficients is reduced to the evaluation of quadratures. Several particular cases of motion are considered.  相似文献   

3.
An exact solution of the antiplane problem of the diffraction of a plane elastic SH-wave with a step profile by a wedge is obtained. The stresses on the wedge sides are assumed to be proportional to a linear combination of the displacements, velocities and higher derivatives with respect to time of the displacements along the wedge axis. A solution of the problem is obtained using integral transformations with subsequent transformation using Cagniard's method. Solutions of the corresponding problems with boundary conditions of the Winkler and inertial types are considered. When a wave with a linear profile is incident on the wedge the stresses suffer a discontinuity of the second kind on the diffraction wave front; the same type of feature is observed in the problem with the inertial condition.  相似文献   

4.
The motion of inertia is studied of a system consisting of an axisymmetric solid body with fixed point and a homogeneous visco-elastic disk lying in the equatorial plane of the ellipsoid of inertia of the solid body (the center of disk coincides with the fixed point). In the case of a solid disk immobilized relative to the solid body the system accomplishes a regular precession (the case of Euler motion of a symmetric solid body with a fixed point /1/). The deformation of the disk is taking place in the plane of the disk, and is accompanied by energy dissipation is the cause of the regular precession finishing by steady rotation about the vector of the moment of momentum of the system /2/.  相似文献   

5.
A longitudinal elastic impact caused by a body on a thin rod is considered. The results of theoretical, finite element, and experimental approaches to solving the problem are compared. The theoretical approach takes into account both the propagation of longitudinal waves in the rod and the local deformations described in the Hertz model. This approach leads to a differential equation with a delayed argument. The three-dimensional dynamic problem is considered in terms of the finite element approach in which the wave propagation and local deformation are automatically taken into account. A benchmark test of these two approaches showed a complete qualitative and satisfactory quantitative agreement of the results concerning the contact force and the impact time. In the experiments, only the impact time was determined. The comparison of the measured impact time with the theoretical and finite element method’s results was satisfactory. Owing to the fact that the tested rod was relatively short, the approximate model with two degrees of freedom was also developed to calculate the force and the impact time. The problem of excitation of transverse oscillation after the rebound of the impactor off the rod is solved. For the parametric resonance, the motion has a character of beats at which the energy of longitudinal oscillation is transferred into the energy of transverse oscillation and vice versa. The estimate for the maximum possible amplitude of transverse oscillation is obtained.  相似文献   

6.
The aim of this investigation is to determine the wave field inside a part of a conic domain filled with an acoustic medium subjected to the action of a nonstationary pressure. The method of solution is based on the discretization of the problem with respect to time by replacing the second derivative by a difference scheme and using new integral transformations with respect to other variables. A recurrent solution of the problem is obtained, and the calculation of a wave field for different geometric parameters of the domain is performed.  相似文献   

7.
The problem of a particle impacting on a wall, a common phenomenon in particle-laden flows in the minerals and process industries, is investigated computationally using a spectral-element method with the grid adjusting to the movement of the particle towards the wall. Remeshing is required at regular intervals to avoid problems associated with mesh distortion and the constantly reducing maximum time-step associated with integration of the non-linear convective terms of the Navier–Stokes equations. Accurate interpolation between meshes is achieved using the same high-order interpolation employed by the spectral-element flow solver. This approach allows the full flow evolution to be followed from the initial approach, through impact and afterwards as the flow relaxes. The method is applied to the generic two-dimensional and three-dimensional bluff body geometries, the circular cylinder and the sphere. The principal case reported here is that of a particle colliding normally with a wall and sticking. For the circular cylinder, non-normal collisions are also considered. The impacts are studied for moderate Reynolds numbers up to approximately 1200. A cylindrical body impacting on a wall produces two vortices from its wake that convect away from the cylinder along the wall before stalling while lifting induced wall vorticity into the main flow. The situation for a sphere impact is similar, except in this case a vortex ring is formed from the wake vorticity. Again, secondary vorticity from the wall and particle plays a role. At higher Reynolds number, the secondary vorticity tends to form a semi-annular structure encircling the primary vortex core. At even higher Reynolds numbers, the secondary annular structure fragments into semi-discrete structures, which again encircle and orbit the primary core. Vorticity fields and passive tracer particles are used to characterize the interaction of the vortical structures. The evolution of the pressure and viscous drag coefficients during a collision are provided for a typical sphere impact. For a Reynolds number greater than approximately 1000 for a sphere and 400 for a cylinder, the primary vortex core produced by the impacting body undergoes a short-wavelength instability in the azimuthal/spanwise direction. Experimental visualisation using dye carried out in water is presented to validate the predictions.  相似文献   

8.
Given an equation f(x) = 0, the problem of finding its solution nearest to a given point is considered. In contrast to the authors’ previous works dealing with this problem, exact algorithms are proposed assuming that the function f is continuous on a compact set. The convergence of the algorithms is proved, and their performance is illustrated with test examples.  相似文献   

9.
We consider an optimal distributed control problem in a planar convex domain with smooth boundary and a small parameter at the highest derivatives of an elliptic operator. The zero Dirichlet condition is given on the boundary of the domain, and the control is included additively in the inhomogeneity. The set of admissible controls is the unit ball in the corresponding space of square integrable functions. Solutions of the obtained boundary value problems are considered in the generalized sense as elements of a Hilbert space. The optimality criterion is the sum of the squared norm of the deviation of the state from a given state and the squared norm of the control with a coefficient. This structure of the optimality criterion makes it possible to strengthen, if necessary, the role of either the first or the second term of the criterion. In the first case, it is more important to achieve the desired state, while, in the second case, it is preferable to minimize the resource consumption. We study in detail the asymptotics of the problem generated by the sum of the Laplace operator with a small coefficient and a first-order differential operator. A feature of the problem is the presence of the characteristics of the limit operator which touch the boundary of the domain. We obtain a complete asymptotic expansion of the solution of the problem in powers of the small parameter in the case where the optimal control is an interior point of the set of admissible controls.  相似文献   

10.
The long-term failure of a layered viscoelastic composite caused by precritical propagation of a coin-shaped crack is studied. It is assumed that the crack is located inside a viscoelastic layer (the layer of binder) parallel to the layer orientation. The crack development due to stretching of the composite massive by uniformly distributed external forces increasing with time is described. It is assumed that these forces act perpendicularly to the plane of crack propagation. The investigation is carried out within the framework of Boltzmann-Volterra linear theory for resolving integral operators with difference kernels describing the deformation of a material with time-dependent rheological properties. An irrational function of the viscoelastic integral operator is presented in the form of a proper continued fraction and transformed using the method of operator continued fractions. Numerical solutions are obtained for resolving integral operators with the kernel in the form of Rabotnov exponential-fractional function. The kinetics of crack growth with a prefailure zone commensurable with the crack length is described. A comparison with the results obtained in terms of the concept of thin structure of the crak tip is given.Timoshenko Institute of Mechanics, Ukrainian National Academy of Sciences, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 545–558, July–August, 2000.  相似文献   

11.
A model of a wheel with a reinforced tyre, whose surface is simulated by a flexible strip (tread) attached to parts of two tori (the sidewalls of the tyre) is considered. The disk of the wheel (a rigid body) has six degrees of freedom and is in contact with the plane along part of the tread. Based on several assumptions, the potential energy functional of the deformed wheel is found as a function of the deformations of the centre line of the tread. On the assumption that the wheel is rolling without slip in the region of contact of the tread with the plane along a previously unknown section of the tread, the complete system of equations of motion is obtained. The equilibrium of the wheel and the steady state of rolling in a straight line with given swivel and tilt are investigated, and all characteristics of the motion are found (the contact region, the tyre deformation, and the forces and torques applied to the wheel disk).  相似文献   

12.
A material system consisting of an outer rigid body (a shell) and an inner body (a material point) is considered. The system moves in a uniform field of gravity over a fixed absolutely smooth horizontal plane. The central ellipsoid of inertia of the shell is an ellipsoid of rotation. The material point moves according to the harmonic law along a straight-line segment rigidly attached to the shell and lying on its axis of dynamical symmetry. During its motion, the shell may collide with the plane. The coefficient of restitution for an impact is supposed to be arbitrary. The periodic motion of the shell is found when its symmetry axis is situated along a fixed vertical, and the shell rotates around this vertical with an arbitrary constant angular velocity. The conditions for existence of this periodic motion are obtained, and its linear stability is studied.  相似文献   

13.
Dymchenko  Yu. V.  Shlyk  V. A. 《Mathematical Notes》2018,103(5-6):901-910
Mathematical Notes - It is proved that, in Euclidean n-space, n ≥ 2, the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted...  相似文献   

14.
A tyre design consisting of a steel-cord-reinforced rigid bond with sides connected to the wheel disc and a protector(tread) in contact with the road is examined. The tread is in the form of a set of rods connected by one end to the band, with the other end either free or in contact with the road. The rod end in contact with the road is acted upon by a force applied from the road, represented by a force normal to the road plane and a shear force due to dry friction. If the modulus of the shear force does not exceed the magnitude of the normal force multiplied by the dry friction coefficient, there is no slip at the contact point. In the opposite case, the rod end will be displaced along the road by an amount sufficient to distribute the normal and shear forces. The dynamics of longitudinal and transverse strains of the rods in contact with the road is analysed using the motion separation method in the quasi-static approximation. The behaviour of the tread rods as a function of the vertical displacement of the wheel centre is investigated, the contact area is found and the conditions are determined under which the contact area is divided into parts in which either slip of the rod ends occurs or does not occur, depending on the magnitude of the longitudinal displacement of the wheel centre or its turning relative to the horizontal axis. An analogue of a continuous model of a rod-like tread is considered, and the magnitudes of the forces and moments are found as a function of the wheel disc displacements. The equations of wheel rolling are obtained, and the conditions under which steady motions exist are found.  相似文献   

15.
R. Gausmann  W. Seemann 《PAMM》2003,2(1):64-65
If piezoceramics are excited by weak electric fields a nonlinear behavior can be observed, if the excitation frequency is close to a resonance frequency of the system. To derive a theoretical model nonlinear constitutive equations are used, to describe the longitudinal oscillations of a slender piezoceramic rod near the first resonance frequency. Hamilton's principle is used to receive a variational principle for the piezoelectric rod. Introducing a Rayleigh Ritz ansatz with the eigenfunctions of the linearized system to approximate the exact solution leads to nonlinear ordinary differential equations. These equations are approximated with the method of harmonic balance. Finally it is possible to calculate the amplitudes of the displacements numerically. As a result it is shown, that the Duffing type nonlinearities found in measurements can be described with this model.  相似文献   

16.
Two problems of the interaction of a hollow circular cylinder with load-free ends and an unbounded plate with a cylindrical cavity and a symmetrically imbedded rigid insert are considered. Homogeneous solutions are found and the generalized orthogonality of these solutions is used when the modified boundary conditions are satisfied. As a result, we have a system of two integral equations in functions of the displacements of the outer and inner surfaces of the hollow cylinder. These functions are sought in the form of sums of a trigonometric series and a power function with a root singularity. The ill-posed infinite systems of linear algebraic equations obtained are regularized by the introduction of small positive parameters. Since the elements of the matrices of the systems as well as the contact stresses are defined by poorly converging numerical and functional series, an efficient method for calculating of the remainders of the above-mentioned series is developed. Formulae are found for the contact pressure distribution function and the integral characteristic. Examples of the calculation of the interaction of the cylinder and the plate with an insert are given.The method of solving contact problems described here has been used earlier1, 2 and the generalized orthogonality of the solutions found for bodies of finite dimensions, that is, for a rectangle and cylinders of finite length, is its basis. Problems for hollow cylinders with a band 2 and an insert reduce to a system of two integral equations, and the problem for a rectangle1 reduces to one integral equation. Solving these integral equations, ill-posed systems of linear algebraic equations are obtained which are subject to regularization3.  相似文献   

17.
Numerical simulations of a surface-catalysed flame in a tubeare performed, corresponding to an experiment where a premixedfuel is fed into a tube whose inner surface is coated with acatalyst. In these experiments, subsequent to ignition, a reactionwave can be seen as a red-hot region which propagates back alongthe tube towards the inlet, and is due to low temperature combustionoccurring only on the inner surface of the tube where the catalystis present. The solutions of a mathematical model for this behaviourshow that initial-value problems do indeed result in such steadilypropagating waves. The numerically obtained wave speeds andsteady solution are compared to a previous large Damköhlernumber (Da) asymptotic analysis using a simple reaction ratemodel, and agreement is very good even for moderately largevalues of Da. However, for such Damköhler numbers, thewave speeds are found to be much larger than observed experimentally.Indeed, the simulations show that O(1) values of Da are requiredto obtain the lower experimental wave speeds. Nevertheless,the wave speeds as a function of flow rate through the tubedo not agree well with the preliminary experimental resultsfor any choice of the parameters. A more realistic, Arrheniusreaction rate model is then considered. The Arrhenius modelpredicts a rapid change in temperature at the wave front, inmuch better agreement with the experiments than for the simplerreaction model.  相似文献   

18.
The movement of a horizontal vortex pair through an inhomogeneous fluid is considered. The problem is formulated first for the case when the ambient fluid is uniform, the fluid moving with the vortex pair has a different density, and the motion is supposed laminar and inviscid. An approximate solution is obtained, which predicts that the distance between the vortices stays constant and the vortices accelerate at a constant rate. This solution is then applied to motion in a stratified atmosphere and it is found that the vortices oscillate vertically with a frequency and amplitude depending on the initial conditions and the stratification. Finally, approximate equations are constructed to describe the effects of turbulent entrainment into the fluid moving with the vortex pair, and an estimate of the damping is obtained.  相似文献   

19.
We consider a three-dimensional unsteady flow with a rotating detonation wave arising in an annular gap of an axially symmetric engine between two parallel planes perpendicular to its symmetry axis. The corresponding problem is formulated and studied. It is assumed that there is a reservoir with quiescent homogeneous propane–air combustible mixture with given stagnation parameters; the mixture flows from the reservoir into the annular gap through its external cylindrical surface toward the symmetry axis, and the parameters of the mixture are determined by the pressure in the reservoir and the static pressure in the gap. The detonation products flow out from the gap into a space bounded on one side by an impermeable wall that is an extension of a side of the gap. Through a hole on the other side of the gap and through a conical output section with a half-opening angle of 45°, the gas flows out from the engine into the external space. We formulate a model of detonation initiation by energy supply in which the direction of rotation of the detonation wave is defined by the position of the energy-release zone of the initiator with respect to the solid wall situated in a plane passing through the symmetry axis. After a while, this solid wall disappears (burns out). We obtain and analyze unsteady shock-wave structures that arise during the formation of a steady rotating detonation. The analysis is carried out within single-stage combustion kinetics by the numerical method based on the Godunov scheme with the use of an original software system developed for multiparameter calculations and visualization of flows. The calculations were carried out on the Lomonosov supercomputer at Moscow State University.  相似文献   

20.
Th electromagnetic field produced by a magnetic dipole in thepresence of a perfectly conducting cone of arbitrary cross-sectionis determined. The solution is used to find out how a currenton the cone travelling towards the apex is reflected. Some valuesof the reflection coefficient are calculated. In particular,it is shown that there is a sort of resonance with the reflectionincreasing significantly as the cone approaches a plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号