首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past several years, the Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) technology. The resulting detector is the product of an effort to produce a low-background, physically robust gas proportional counter for applications like radon emanation measurements, groundwater tritium, and 37Ar. In order to fully take advantage of the inherent low-background properties designed into the ULBPC, a comparably low-background dedicated counting system is required. An ultra-low-background counting system (ULBCS) was recently built in the new shallow underground laboratory at PNNL. With a design depth of 30 m water-equivalent, the shallow underground laboratory provides approximately 100× fewer fast neutrons and 6× fewer muons than a surface location. The ULBCS itself provides additional shielding in the form of active anti-cosmic veto (via 2-in-thick plastic scintillator paddles) and passive borated poly (1 in.), lead (6 in.), and copper (~3 in.) shielding. This work will provide details on PNNL’s new shallow underground laboratory, examine the motivation for the design of the counting system, and provide results from the characterization of the ULBCS, including initial detector background.  相似文献   

2.
A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (~30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a “self-calibrating” template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed.  相似文献   

3.
The Pacific Northwest National Laboratory (PNNL) is currently developing a custom software suite capable of automating many of the tasks required to accurately analyze coincident signals within gamma spectrometer arrays. During the course of this work, significant crosstalk was identified in the energy determination for spectra collected with a new low-background intrinsic germanium (HPGe) array at PNNL. The HPGe array is designed for high detection efficiency, ultra-low-background performance, and sensitive γ–γ coincidence detection. The first half of the array, a single cryostat containing seven HPGe crystals, was recently installed into a new shallow underground laboratory facility. This update will present a brief review of the germanium array, describe the observed crosstalk, and present a straight-forward empirical correction that significantly reduces the impact of this crosstalk on the spectroscopic performance of the system.  相似文献   

4.
Physics experiments, environmental surveillance, and treaty verification techniques continue to require increased sensitivity for detecting and quantifying radionuclides of interest. This can be done by detecting a greater fraction of gamma emissions from a sample (higher detection efficiency) and reducing instrument backgrounds. A current effort for increased sensitivity in high resolution gamma spectroscopy will produce an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and useful coincidence efficiencies. The system design is optimized to accommodate filter paper samples, e.g. samples collected by the Radionuclide Aerosol Sampler/Analyzer (RASA). The system will provide high sensitivity for weak collections on atmospheric filter samples, as well as offering the potential to gather additional information from more active filters using gamma cascade coincidence detection. The current effort is constructing an ultra-low-background HPGe crystal array consisting of two vacuum cryostats, each housing a hexagonal array of 7 crystals on the order of 70% relative efficiency per crystal. Traditional methods for constructing ultra-low-background detectors are used, including use of materials known to be low in radioactive contaminants, use of ultra pure reagents, clean room assembly, etc. The cryostat will be constructed mainly from copper electroformed into near-final geometry at PNNL. Details of the detector design, simulation of efficiency and coincidence performance, HPGe crystal testing, and progress on cryostat construction are presented.  相似文献   

5.
Various configurations of planar silicon photodiode arrays were tested as detection devices for multichannel emission spectrometry. The electronics comprised a laboratory-built preamplifier (open loop gain 25,000) that allowed measurements with commercial high-gain low-noise d.c. and lock-in amplifiers. An a.c. noise level of 2.5 × 10?15 A (modulating frequency = 400 Hz, frequency band pass ≈ 1 Hz) and a low frequency noise level of 6 × 10?15 A (3-db high-frequency roll-off = 3 Hz) at the output of the detector was reached at room temperature. This noise can be ascribed completely to the preamplifier. Cooling the photodiodes has no effect on the noise level and can be omitted. A perfectly linear response over at least three orders of magnitude above the noise level and a spectral resolution equivalent to that attained with photomultiplier and exit slit were established. Comparison of the signal-to-noise (S/N) ratio of the photodiodes with that of various types of photomultiplier showed that photomultipliers were superior by a factor of 100–500 in the S/N ratio at low light levels in the wavelength region between 2500 and 5500 Å. Prospects for further research on photodiode devices for dual-channel intensity measurements (simultaneous measurement of line-plus-background and background) are discussed.  相似文献   

6.
High-purity copper has emerged as a preferred construction material for ultra-low-background HPGe spectrometers and offers excellent bulk radiopurity along with good electrical, thermal, and vacuum properties. Recently, these materials and techniques have been applied to the construction of low-background internal-source gas proportional counters. This work describes the design, construction, and testing of an ultra-low-background internal-source gas proportional counter built primarily of high purity electroformed copper. Energy resolution of ~10% FWHM at 59.5 keV has been achieved, a low-energy threshold of ~3 keV has been reached, and gas gain stability over a 4-week period has been demonstrated. Progress toward low-background operation is described.  相似文献   

7.
A boron carbide capsule was previously designed and tested by Pacific Northwest National Laboratory (PNNL) and Washington State University (WSU) for spectral-tailoring in mixed spectrum reactors. The presented work used this B4C capsule to create a fission product sample from the irradiation of highly enriched uranium (HEU) with a fast fission neutron spectrum. An HEU foil was irradiated inside of the capsule in WSU’s 1 MW TRIGA reactor at full power for 200 min to produce 5.8 × 1013 fissions. After 3 days of cooling, the sample was shipped to PNNL for radiochemical separations and analysis by gamma and beta spectroscopy. Fission yields for products were calculated from the radiometric measurements and compared to measurements from thermal neutron induced fission (analyzed in parallel with the non-thermal sample at PNNL) and published evaluated fast-pooled and thermal nuclear data. Reactor dosimetry measurements were also completed to fully characterize the neutron spectrum and total fluence of the irradiation.  相似文献   

8.
Recent work on a new, higher sensitivity preamplifier design for Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) revealed a number of artifact peaks (spectral features) which do not contain useful chemical information. In order to determine the cause of these artifacts and eliminate them, these severely distorted spectra were compared with similarly distorted signal models. The source of several common signal processing artifacts was thereby determined and correlated to radio‐frequency interference (RFI) noise and saturation of the amplifier and/or the digitizer. Under such conditions, the fast Fourier transform (FFT) generates spectral artifact peaks corresponding to harmonics and mixing frequencies of the real signal peaks and RFI frequencies. While this study was done using FTICRMS data, it is important to stress that these artifacts are inherent to the digitization and FFT process and thus are relevant to any FT‐based MS instrument, including the orbitrap and FT ion trap. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract— A silicon photodiode equipped with a low-noise amplifier is incorporated in an apparatus of flash absorption spectroscopy. This device provides a good signal to noise ratio in the detection of short-lived species (1µs-5 ms) formed in photobiological processes.  相似文献   

10.
An external source Fourier transform mass spectrometer (FTMS) constructed inside the vertical cold bore of a superconducting magnet will have dramatic advantages in effective magnetic field, noise figures, and base pressure over current commercially available external source FTMS systems. There are substantial, but solvable, difficulties in the design, primarily with regard to control of the helium boiloff rate to an acceptable level, as well as relatively minor design challenges with heat sinks, contraction of metallic ion optic elements in the extreme temperature, and tandem mass spectrometry experiments. However, the ability to construct the FTMS inside the narrow bore tube of existing, commercially available vertical bore NMR magnets will allow access to the upper magnetic field limit currently used by 900 MHz (21 Tesla) - 1 GHz (23.3 Tesla) NMR experiments. The vacuum system, simply by being held inside the cold bore at 4.2 K, will cryopump itself dropping base pressures substantially, and heat sinking the input resistor of the preamplifier to this cryogenically cooled vacuum chamber will allow reduction of the input Johnson noise by a factor of 8.4 with associated 8.4-fold improvement in signal/noise, sensitivity, and dynamic range. The simultaneous improvement of three fundamental limiting factors in the FTMS (field strength, base pressure, and Johnson noise figure) will clearly outweigh the concomitant increased helium boiloff rate particularly if this rate can be dropped to the estimated <5 L/day range. The additional use of modern cryorefrigerators will further reduce helium boiloff to zero except during MS(n) experiments and system cooldown.  相似文献   

11.
Spectral signals are often corrupted by noise during their acquisition and transmission. Signal processing refers to a variety of operations that can be carried out on measurements in order to enhance the quality of information. In this sense, signal denoising is used to reduce noise distortions while keeping alterations of the important signal features to a minimum. The minimization of noise is a highly critical task since, in many cases, there is no prior knowledge of the signal or of the noise. In the context of denoising, wavelet transformation has become a valuable tool. The present paper proposes a noise reduction technique for suppressing noise in laser-induced breakdown spectroscopy (LIBS) signals using wavelet transform. An extension of the Donoho's scheme, which uses a redundant form of wavelet transformation and an adaptive threshold estimation method, is suggested. Capabilities and results achieved on denoising processes of artificial signals and actual spectroscopic data, both corrupted by noise with changing intensities, are presented. In order to better consolidate the gains so far achieved by the proposed strategy, a comparison with alternative approaches, as well as with traditional techniques, is also made.  相似文献   

12.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   

13.
We present a versatile, optical fiber coupled light emitting diode (LED) light source based flow-through optical absorbance detector. The LED source is readily changeable. Optical fibers are used to carry light from the electronics/display unit to a reflective flow-through cell and back. The cell can thus be located remotely from the electronics unit and the umbilical connection is not susceptible to electrical noise. The noise level of this detector with LEDs of different emission maxima were observed to be in the range of 3-20 muAU under actual use conditions, with a maximum short term drift of 4 muAU/min after the initial warm-up period. When the analyte absorbance is well matched with the source emission characteristics, the detector response is linear with concentration over at least two orders of magnitude. The liquid flow path through the cell is linear with a large exit aperture such that bubbles are not trapped in the optical path. The optical arrangement is such that the incident light crosses the liquid flow orthogonally and is reflected back by a rear mirror to the receiver fiber. This arrangement reduces the refractive index sensitivity by an order of magnitude relative to conventional Z-path flow cells.  相似文献   

14.
Summary The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75&percnt; of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL&apos;s nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70&percnt; of its activities were nuclear/radiological, and now just under 50&percnt; of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of nuclear legacies, global security, nonproliferation, homeland security and national defense, radiobiology and nuclear energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.  相似文献   

15.
Positive and negative streamer discharges in atmospheric pressure air were generated in a shielded sliding discharge reactor at operating voltages as low as 5 kV for a gap length of 1.6 cm. In this reactor, electrodes are placed on top of a dielectric layer and one of the electrodes, generally the one on ground potential, is connected to a conductive layer on the opposite side of the dielectric. The energy per pulse, at the same applied voltage, was more than a factor of seven higher than that of pulsed corona discharges, and more than a factor of two higher than that of sliding discharges without a shield. It is explained on the basis of enhanced electric fields, particularly at the plasma emitting electrode. Specific input energy required for 50 % removal from ~1,000 ppm initial NO could be reduced to ~18 eV/molecule when ozone in the exhaust of negative streamers was utilized. For sliding discharges and pulsed corona discharges this value was ~25 eV/molecule and it was 35 eV/molecule for positive shielded sliding discharges. Also, the ozone energy yield from dry air was up to ~130 g/kW h and highest for negative streamer discharges in shielded sliding discharge reactors. The high energy density in negative streamer discharges in the shielded discharge reactor at the relatively low applied voltages might not only allow expansion of basic studies on negative streamers, but also open the path to industrial applications, which have so far been focused on positive streamer discharges.  相似文献   

16.
Aerosol collections were initiated at several locations by Pacific Northwest National Laboratory (PNNL) shortly after the Great East Japan earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.  相似文献   

17.
18.
Although microdischarges in dielectric-barrier discharges (DBDs) have been studied for the past century, their mutual interaction was explained only recently. This interaction is responsible for the formation of microdischarge patterns reminiscent of two-dimensional crystals. Depending on the application, microdischarge patterns may have a significant influence on DBD performance, particularly when spatial uniformity is desired. This paper presents the results of study of regular microdischarge pattern formation in DBD in air at atmospheric pressure. Experimental images of DBD (Lichtenberg figures) were obtained using photostimulable phosphors. A new method for analysis of microdischarge patterns that allow measuring the degree of pattern regularity was developed. Simulated and experimental patterns were compared using the newly developed method and comparison indicates the presence of interaction between microdischarges. Analysis of microdischarge patterns shows that regularity of the patterns increases with the number of excitation cycles used to produce the pattern.  相似文献   

19.
A low-noise detector for indirect photometric detection has been constructed using a highly stable source--a light-emitting diode (LED). Use of the detector is demonstrated for reversed-phase liquid chromatography by adding methylene blue to the mobile phase to make a background signal. The indirect determination of alcohols by their effect on methylene blue concentration distribution is demonstrated, and an investigation is made into the conditions for high sensitivity. Because the source exhibits low noise, the detection limits for alcohols are as low as more complex and expensive detection methods, despite the lower radiant power of the LED. Detection limits for nine alcohols are below micrograms injected amounts.  相似文献   

20.
Hebert NE  Kuhr WG  Brazill SA 《Electrophoresis》2002,23(21):3750-3759
The development of a microchip electrophoresis system involving integrated frequency based electrochemical detection is described. The use of poly(dimethylsiloxane) (PDMS) as the channel substrate greatly simplifies the fabrication process while decreasing cost and time consumption. Characterization of this system is accomplished through the detection of native carbohydrates at planar copper electrodes. Various photolithographic techniques are explored in the optimization of electrode area. Separation efficiency of 1 x 10(5) theoretical plates per meter is demonstrated. Sinusoidal voltammetry utilizes information in the frequency domain to achieve sensitive detection through either of two approaches, maximization of signal or minimization of noise. Mass detection limits (S/N = 3) of less than 200 amol have been accomplished for glucose and sucrose. Sinusoidal voltammetry also facilitated the selective isolation of an analyte signal from a pair of chromatographically unresolved species through the use of phase discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号