首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A flow injection procedure for the sequential spectrophotometric determination of iron(II) and iron(III) in pharmaceutical products is described. The method is based on the catalytic effect of iron(II) on the oxidation of iodide by bromate at pH = 4.0. The reaction was monitored spectrophotometrically by measuring the absorbance of produced triiodide ion at 352 nm. The activating effect for the catalysis of iron(II) was extremely exhibited in the presence of oxalate ions, while oxalate acted as a masking agent for iron(III). The iron(III) in a sample solution could be determined by passing through a Cd-Hg reductor column introduced in the FIA system to reduce iron(III) to iron(II), which allows total iron determination. Under the optimum conditions, iron(II) and iron(III) could be determined over the range of 0.05 - 5.0 and 0.10 - 5.0 microg ml(-1), respectively with a sampling rate of 17 +/- 5 h(-1). The experimental limits of detection were 0.03 and 0.04 microg ml(-1) for iron(II) and iron(III), respectively. The proposed method was successfully applied to the speciation of iron in pharmaceutical products.  相似文献   

2.
The cyclic voltammetric behavior of carbon paste electrodes modified by direct admixing with the products of the reactions between ethanedial (glyoxal) and 5-amino-1,10-phenanthroline at 100°C and that of their iron(II) complexes is reported. The ligand(s) produced in absence of iron(II) are able to complex iron(II) and copper(II) ions reversibly, but other ions such as nickel(II), cobalt(II), cadmium(II) and manganese(II), if complexed, show no electrochemical activity. Admixing with the products of the reaction in the presence of excess of iron(II) ion, because of high insolubility and fast electron exchange, produces surfaces useful for amperometric detection in continuous-flow systems. The voltammetric and amperometric behavior in the presence of HSO?3 ions is reported in order to illustrate this application.  相似文献   

3.
Teshima N  Ayukawa K  Kawashima T 《Talanta》1996,43(10):1755-1760
A flow injection analysis (FIA) method is presented for the simultaneous determinations of iron(III)-vanadium(V) and of iron(III)-chromium(VI) using a single spectrophotometric detector. In the presence of 1,10-phenanthroline (phen), iron(III) is easily reduced by vanadium(IV) to iron(II), followed by the formation of a red iron(II)-phen complex (lambda(max) = 510 nm), which shows a positive FIA peak at 510 nm corresponding to the concentration of iron(III). On the other hand, in the presence of diphosphate the reductions of vanadium(V) and/or chromium(VI) with iron(II) occur easily because the presence of diphosphate causes an increase in the reducing power of iron(II). In this case iron(II) is consumed during the reaction and a negative FIA peak at 510 nm corresponding to the concentration of vanadium(V) and/or chromium(VI) is obtained. The proposed method makes it possible to obtain both positive (for iron(III)) and negative (for vanadium(V) or chromium(VI)) FIA peaks with a single injection.  相似文献   

4.
A convenient and efficient method for the estimation of cobalt(II) ions in the presence of other metal ions is described. Interference of metal ions such as iron(II), iron(III), nickel(II), manganese(II), and copper(II) have been investigated. Only iron(III) ions seriously affect this determination. Copper(II) and nickel(II) ions do not interfere if present in a molar-ratio less than 1:2 in the cobalt(II) ion solution. Cobalt(II)-nickel(II) and cobalt(II)-copper(II) binary mixtures can be efficiently analyzed at selective wavelengths.  相似文献   

5.
Manganese(II) iodide, iron(II) iodide and copper(I) iodide each react with tetramethylammonium disulphite to form anhydrous manganese(II) sulphite, iron(II) sulphite and copper(I) disulphite respectively. Iron(II) sulphite and copper(I) disulphite react with dimethylsulphoxide-sulphur dioxide to form iron(II) disulphate and copper(II) disulphate respectively. Hydrated sulphites of manganese(II), iron(II), magnesium(II) and calcium(II) were also prepared. The properties of the sulphites were investigated using thermogravimetric and IR measurements.  相似文献   

6.
Mudasir  Yoshioka N  Inoue H 《Talanta》1997,44(7):1195-1202
A reversed phase ion-paired chromatographic method that can be used to determine trace amounts of iron (II,III), nickel (II) and copper (II) was developed and applied to the determination of iron (II) and iron (III) levels in natural water. The separation of these metal ions as their 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) chelates on an Inertsil ODS column was investigated by using acetonitrile-water (80/20, v/v) containing 0.06 M perchloric acid as mobile phase and diode array spectrophotometric detection at 250-650 nm. Chromatographic parameters such as composition of mobile phase and concentration of perchloric acid in mobile phase were optimized. The calibration graphs of iron (II), nickel (II) and copper (II) ions were linear (r > 0.991) in the concentration range 0-0.5, 0-2.0 and 0-4.0 mug ml(-1), respectively. The detection limit of iron (II), nickel (II) and copper (II) were 2.67, 5.42 and 18.2 ng ml(-1) with relative standard deviation (n = 5) of 3.11, 5.81 and 7.16% at a concentration level of 10 ng ml(-1) for iron (II) and nickel (II) and 25 ng ml(-1) for copper (II), respectively. The proposed method was applied to the determination of iron(II) and iron(III) in tap water and sea water samples without any interference from other common metal ions.  相似文献   

7.
A simple, non-separation method for the simultaneous, single-injection determination of nickel(II) and iron(II) is described. The method is based on doublet peaks in a single-line system, with multiple vertical (absorbance) measurements of the doublet peak profile. Doublet peaks occur when the center of the sample zone remains unmixed. Nickel(II), 0.17–0.24 M, in the presence of 2.7–5.4 mM iron(II) is determined by direct spectrophotometry of the nickel(II) ion at the center of the sample zone, Iron(II) is first oxidized on-line by peroxodisulfate to iron(III), which complexes with thiocyanate to form the intensely red complex; this is measured at the peak maximum corresponding to the trailing edge of the sample zone. Correction are made for absorbance of nickel and its reduction in the iron thiocyanate complex formation. The absorbance of nickel(II) ion and the iron thiocyanate complex are both measured at 395 nm from a single injected sample. The general utility of the doublet peak method is discussed.  相似文献   

8.
Hybrid particles containing different hydrophilic metal salts such as tetrafluoroborates of iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), and nitrates of cobalt(II), nickel(II), copper(II), zinc(II), and iron(III), and cobalt(II) chloride were synthesized via inverse miniemulsion polymerization of 2-hydroxyethyl methacrylate (HEMA). All salts delivered narrowly size-distributed hybrid particles with the exception of iron(III), where only the nitrate salt could be successfully employed. The size and size distribution of the hybrid particles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The particle morphology and the distribution of salt in the dried particles were observed by TEM. The influences of the type of metal salts and salt content on the particle size distribution were extensively investigated.  相似文献   

9.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

10.
The coupling reaction of water-soluble alkyl nitriles using Fenton's reagent (Fe(II) and H2O2) is described. The best metal for the reaction is iron(II), and the greatest yields are obtained when the concentration of the metal is kept low. Hydrogen-atom abstraction is selective, preferentially producing the radical alpha to the nitrile. In order to increase the production of dinitrile, in situ reduction of iron(III) to iron(II), using a variety of reducing agents, was investigated.  相似文献   

11.
Sakla AB  Helmy AA  Beyer W  Harhhash FE 《Talanta》1979,26(7):519-522
The chelates of morpholinium morpholine-N-dithiocarboxylate with manganese(II), iron(II), iron(III), cobalt(II), nickel, copper(II), zinc, silver, cadmium, mercury(II), lead, bismuth and uranium(VI) have been prepared and their compositions elucidated. Simple, accurate and relatively rapid procedures for the gravimetric and titrimetric microdetermination of these metals in inorganic and organometallic compounds are presented.  相似文献   

12.
Summary The synthesis and characteristics of a new chelating glycinohydroxamate-containing polymer resin is described. The functionality of the polymer is 1.76 mmolg–1. The hydrogen capacity, water regain and adsorption capacities for iron(III), cadmium(II), cobalt(II), copper(II), nickel(II) and zinc(II) were measured at various pH values; uptake of the metal ions increased with pH and was quantitative above pH 3 for most of the metal ions. All cations studied showed high exchange rates towards the resin. The half saturation times for iron(III), cadmium(II), copper(II) and zinc(II) were all less than 1 min. The coordination behaviour of the resin was studied with the help of e.p.r., i.r., u.v. and potentiometry. The pK a of the resin is 10.70 and the log value of the stability constants for iron(III), copper(II), lead(II), zinc(II), cobalt(II), manganese(II), cadmium(II) and nickel(II) were measured as 21.81, 19.50, 19.20, 18.59, 18.51, 18.46, 18.37 and 18.36, respectively, at 25 ° C and I = 0.2M KCl.  相似文献   

13.
Rate constants for base hydrolysis of bis(naphthylidene isoleucinate)iron (II) (nili), bis(naphthylidene leucinate)iron(II) (nli), bis(naphthylidene serinate)iron(II) (nsi), bis(salicylidene isoleucinate)iron(II) (sili), (salicylidene leucinate)iron(II) (sli), bis(salic- ylidene methioninate)iron(II) (smi), and (salicylidene tryptophanate)iron(II) (sti) have been reported in different binary aqueous mixtures at 298 K. The observed reactivity trends are discussed in terms of the hydrophilic and hydrophobic forms of the complexes investigated, as well as the transfer chemical potentials of hydroxide ion and the complex. Both the solvent–solute and solvent–solvent interactions have been considered. The hydrophobic character of the complexes studied was manifested by enhancing the rate of base hydrolysis at the initial addition of the different cosolvents; further addition led mostly to a decrease in reactivity, but, in some cases, the greater destabilization of OH ion by added DMSO and acetone increases the rate of base hydrolysis. The modified Savage–Wood equation, based on the principle of group additivity, was applied to estimate the observed kinetic medium effects.  相似文献   

14.
Kara D  Alkan M 《Talanta》2001,55(2):415-423
The synthesis and analytical applications of N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane (HBDAP) are described. This compound reacts with Fe(III) in the range of pH 3-6 to produce a red complex (2:3 mol ratio of Fe(III)/HBDAP) soluble in chloroform. The investigation included a study of the characteristics that are essential for solvent extraction and for spectrophotometric determination and speciation of iron. A highly sensitive, selective and rapid spectrophotometric method is described for the determination of trace amounts of iron(III) by HBDAP. The complex obeys Beer's law from 0.056 to 1.68 mg l(-1) with an optimum range. The detection limit (taken as three times the standard deviation of the reagent blank) is approximately 1.23x10(-7) M Fe(III) and the limit of quantitation (taken as ten times the standard deviation of the reagent blank) is about 4.11x10(-7) M Fe(III). A single extraction gave a good separation of iron(III) from iron(II). Good separation of Fe(III) from Ni(II), Fe(II), Co(II), Cd(II), Mn(II), Zn(II), Pb(II) was also achieved at pH 3-5.  相似文献   

15.
 The labile iron(II) and iron(III) species are complexed directly in the sample solution with 1,10 phenanthroline and ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid), respectively. The complexes thus formed are mutually adsorbed and separated by solid phase extraction. The direct determination of iron(III) and iron(II) species with flame atomic absorption spectrometry (FAAS) follows the elution of the iron(III)-ferron complex adsorbed by an anion-exchange and an iron(II)-phenanthroline complex adsorbed by a non-polar RP-18 phase. In the case of indirect determination, the iron(II)-phenanthroline complex that passes through the anion-exchange phase, is measured, and the content of iron(III) is calculated by the difference of the iron(II) and the total iron content. A direct determination with this method has been applied to the iron species analysis in wine samples and the results are compared with those obtained for the determination with adsorptive stripping voltammetry (ASV) as reference method. Received: 17 August 1995/Revised: 12 February 1996/Accepted: 14 February 1996  相似文献   

16.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

17.
The synthesis of “capped porphyrins” (10), (18), and (28), and their (chloro)iron(III), iron(II), cobalt (II), and zinc(II) complexes is reported. These complexes serve as models for the active site of the oxygen binding haemoproteins. In addition to reversible binding of dioxygen by each of the iron (II) porphyrin complexes, the 1-methyl-imidazole-(“C3-capped porphyrin”) iron (II) complex (23) reacts reversibly with carbon monoxide, in solution at 25°C.  相似文献   

18.
Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.  相似文献   

19.
Analytical applications of a new solid reagent tris(2,2′-dipyridyl)iron(II) tetraphenylborate are described. The solid reagent selectively reacts with Ag(I), Tl(I), and Hg(II) cations to release the colored tris(2,2′-bipyridyl)iron(II) cation in solution, which is determined spectrophotometrically. The experimental data show that the Ag(I), Tl(I), and Hg(II) cations respond linearly in 5 to 50-ppm range.  相似文献   

20.
Mandal SK 《Talanta》1979,26(2):133-134
Vanadium(III) solutions can be used in direct titrations of iron(III), copper(II), thallium(III), molybdenum(VI), uranium(VI), vanadium(V), chromium(VI) and manganese(VII) in milligram amounts. The titrations are done at 70-80 degrees for iron(III), copper(II), thallium(III), molybdenum(VI) and at room temperature for vanadium(V), chromium(VI) and manganese(VII). Uranium(VI) is titrated at 70-80 degrees in presence of iron(II). The vanadium(III) solution is prepared by reduction of vanadium(V) to vanadium(IV) with sulphur dioxide, followed by addition of phosphoric acid and reduction with iodide, and is reasonably stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号