首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nicotinic acetylcholine receptor (AChR) is the paradigm of ligand-gated ion channels, integral membrane proteins that mediate fast intercellular communication in response to neurotransmitters. A 35-ns molecular dynamics simulation has been performed to explore the conformational dynamics of the entire membrane-spanning region, including the ion channel pore of the AChR. In the simulation, the 20 transmembrane (TM) segments that comprise the whole TM domain of the receptor were inserted into a large dipalmitoylphosphatidylcholine (DPPC) bilayer. The dynamic behavior of individual TM segments and their corresponding AChR subunit helix bundles was examined in order to assess the contribution of each to the conformational transitions of the whole channel. Asymmetrical and asynchronous motions of the M1-M3 TM segments of each subunit were revealed. In addition, the outermost ring of five M4 TM helices was found to convey the effects exerted by the lipid molecules to the central channel domain. Remarkably, a closed-to-open conformational shift was found to occur in one of the channel ring positions in the time scale of the present simulations, the possible physiological significance of which is discussed.  相似文献   

2.
The unbinding process of E2020 ((R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]-methylpiperidine) leaving from the long active site gorge of Torpedo californica acetylcholinesterase (TcAChE) was studied by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different velocities, and unbinding force profiles were obtained. Different from the unbinding of other AChE inhibitors, such as Huperzine A that undergoes the greatest barrier located at the bottleneck of the gorge, the major resistance preventing E2020 from leaving the gorge is from the peripheral anionic site where E2020 interacts intensively with several aromatic residues (e.g., Tyr70, Tyr121, and Trp279) through its benzene ring and forms a strong direct hydrogen bond and a water bridge with Ser286 via its O24. These interactions cause the largest rupture force, approximately 550 pN. It was found that the rotatable bonds of the piperidine ring to the benzene ring and dimethoxyindanone facilitate E2020 to pass the bottleneck through continuous conformation change by rotating those bonds to avoid serious conflict with Tyr121 and Phe330. The aromatic residues lining the gorge wall are the major components contributing to hydrophobic interactions between E2020 and TcAChE. Remarkably, these aromatic residues, acting in three groups as "sender" and "receiver", compose a "conveyer belt" for E2020 entering and leaving the TcAChE gorge.  相似文献   

3.
IBIsCO is a parallel molecular dynamics simulation package developed specially for coarse-grained simulations with numerical potentials derived by the iterative Boltzmann inversion (IBI) method (Reith et al., J Comput Chem 2003, 24, 1624). In addition to common features of molecular dynamics programs, the techniques of dissipative particle dynamics (Groot and Warren, J Chem Phys 1997, 107, 4423) and Lowe-Andersen dynamics (Lowe, Europhys Lett 1999, 47, 145) are implemented, which can be used both as thermostats and as sources of friction to compensate the loss of degrees of freedom by coarse-graining. The reverse nonequilibrium molecular dynamics simulation method (Müller-Plathe, Phys Rev E 1999, 59, 4894) for the calculation of viscosities is also implemented. Details of the algorithms, functionalities, implementation, user interfaces, and file formats are described. The code is parallelized using PE_MPI on PowerPC architecture. The execution time scales satisfactorily with the number of processors.  相似文献   

4.
Molecular dynamics (MD) simulations of human adult hemoglobin (HbA) were carried out for 45 ns in water with all degrees of freedom including bond stretching and without any artificial constraints. To perform such large-scale simulations, one of the authors (M.S.) accelerated his own software COSMOS90 on the Earth Simulator by vectorization and parallelization. The dynamical features of HbA were investigated by evaluating root-mean-square deviations from the initial X-ray structure (an oxy T-state hemoglobin with PDB code: 1GZX) and root-mean-square fluctuations around the average structure from the simulation trajectories. The four subunits (alpha(1), alpha(2), beta(1), and beta(2)) of HbA maintained structures close to their respective X-ray structures during the simulations even though no constraints were applied to HbA in the simulations. Dimers alpha(1)beta(1) and alpha(2)beta(2) also maintained structures close to their respective X-ray structures while they moved relative to each other like two stacks of dumbbells. The distance between the two dimers (alpha(1)beta(1) and alpha(2)beta(2)) increased by 2 A (7.4%) in the initial 15 ns and stably fluctuated at the distance with the standard deviation 0.2 A. The relative orientation of the two dimers fluctuated between the initial X-ray angle -100 degrees and about -105 degrees with intervals of a few tens of nanoseconds.  相似文献   

5.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease of central nervous system among elderly people. Human acetylcholinesterase (hAChE), an important enzyme in neuronal signaling, is responsible for the degradation of acetylcholine which in turn prevents the post synaptic signal transmissions. hAChE has been an attractive target of drug discovery for the search of therapeutics against AD. In the recent past hAChE has become hot target for the investigation of new potential therapeutics. We performed virtual screening of entire database against hAChE. Further, the extra precision molecular docking was carried out to refine the docking results and the best complex was passed for molecular dynamics simulations in order of understanding the hAChE dynamics and its behavior in complex with the ligand which corroborate the outcomes of virtual screening. This also provides binding free energy data that establishes the ligands efficiency for inhibiting hAChE. The computational findings discussed in this paper provide initial information of inhibitory effects of ligand, (drugbank entry DB00983), over hAChE.  相似文献   

6.
A molecular dynamics simulation was conducted to investigate the growth kinetics at the ice prismatic interface to which a spruce budworm antifreeze protein was bound. Two initial binding conformations of the protein at the interface--one energetically stable and the other energetically unstable--were examined. For both binding conformations, the growth of ice was observed around the protein. A sharp decrease in the rate of ice growth was observed around the protein that initially had the energetically stable binding conformation. Simulation results suggest that the observed decrease in the ice growth rate was attributable to melting point depression caused by the Gibbs-Thomson effect. The protein that initially had the energetically unstable binding conformation markedly relaxed so as to stably bind to the prismatic plane interface of the grown ice; thereafter, a decrease in the ice growth rate was observed as well. However, the binding conformation that the protein approached during the relaxation was different from that of the protein that initially had the energetically stable binding conformation. Thus, the simulation indicates the existence of two binding conformations for inducing a decrease in the ice growth rate. The results are possibly related to the hyperactivity of a spruce budworm antifreeze protein in real systems.  相似文献   

7.
Thermophoresis in liquids is studied by molecular dynamics simulation (MD). A theory is developed that divides the problem in the way consistent with the characteristic scales. MD is then conducted to obtain the solution of each problem, which is to be all combined for macroscopic predictions. It is shown that when the temperature gradient is applied to the nonconducting liquid bath that contains neutral particles, there occurs a pressure gradient tangential to the particle surface at the particle-liquid interface. This may induce the flow in the interfacial region and eventually the particle to move. This applies to the material system that interacts through van der Waals forces and may be a general source of the thermophoresis phenomenon in liquids. The particle velocity is linearly proportional to the temperature gradient. And, in a large part of the given temperature range, the particle motion is in the direction toward the cold end and decreases with respect to the temperature. It is also shown that the particle velocity decreases or even reverses its sign in the lowest limit of the temperature range or with a particle of relatively weak molecular interactions with the liquid. The characteristics of the phenomenon are analyzed in molecular details.  相似文献   

8.
Measurements of time-resolved Stokes shifts on picosecond to nanosecond time scales have been used to probe the polar solvation dynamics of biological systems. Since it is difficult to decompose the measurements into protein and solvent contributions, computer simulations are useful to aid in understanding the details of the molecular behavior. Here we report the analysis of simulations of the electrostatic interactions of the rest of the protein and the solvent with 11 residues of the immunoglobulin binding domain B1 of protein G. It is shown that the polar solvation dynamics are position-dependent and highly heterogeneous. The contributions due to interactions with the protein and with the solvent are determined. The solvent contributions are found to vary from negligible after a few picoseconds to dominant on a scale of hundreds of picoseconds. The origin for the latter is found to involve coupled hydration and protein conformational dynamics. The resulting microscopic picture demonstrates that a wide range of possibilities have to be considered in the interpretation of time-resolved Stokes shift measurements.  相似文献   

9.
Molecular dynamics was used to study the hydration of superoxide (O). The Helmholtz free energy of hydration of O was estimated by the thermodynamic integration method. The diffusion of O and the water structure around O were also studied. Two water models were used in the calculations and the results were compared to experiments.  相似文献   

10.
From an experimental perspective, there has been disagreement among researchers on whether ethane would display single-file or normal diffusive behavior in the channels of AlPO(4)-5. Pulsed field gradient nuclear magnetic resonance measurements implied single-file diffusion, while quasielastic neutron scattering showed normal diffusion. In this paper we present the results of extensive classical molecular dynamics simulations of the diffusion of ethane molecules adsorbed in AlPO(4)-5. Our aim is to provide microscopic details of the static and dynamic properties of the adsorbed molecules in order to verify whether the conditions for the single-file regime can be achieved in a nondefective AlPO(4)-5 crystal structure.  相似文献   

11.
Using first-principles molecular dynamics simulations (Car-Parrinello method) we investigated the possible reaction pathways for decay of the active bleomycin-Fe(III)-OOH complex, so-called bleomycin suicide. The theoretical model of activated bleomycin contains the whole metal bonding domain of the bleomycin ligand. Simulations performed both in a vacuum and in water show that a facile decaying process involves a homolytic O-O bond cleavage with an almost simultaneous hydrogen atom abstraction. The formation of an intra- or intermolecular hydrogen bond appears to be crucial for the decay of the activated bleomycin. We did not observe any evidence of heterolytic cleavage of the O-O bond of the Fe(III)-OOH species.  相似文献   

12.
In this study, we have examined supramolecular self-assembly process of a hydrophobic guest with a water-soluble host known by the trivial name octa acid (OA). Two octa acids form a capsular assembly only in presence of a nonpolar guest(s). Size and shape of the guest control the stoichiometry of the capsular complex. Here, all atom molecular dynamics simulation has been utilized to investigate complex formation mechanisms of a nonpolar guest (nonylbenzene) with two OA cavitands. Nonylbenzene was encapsulated into the nonpolar cavity of OA capsule owing to solvophobic interactions. Upon encapsulation it was twisted and bent due to lack of free space within the capsule. These unusual forms obtained from the simulation study were in accord with experimental findings. The post-complexation attributes of the guest were regulated by the available free space within the OA and favorable non-covalent interactions between the guest and the walls of the OA capsule. In the identical simulation condition two OA cavitands did not form a capsule without a guest, thus indicating requirement of a guest during the self-assembly of OA cavitands.  相似文献   

13.
14.
Translational motions of water molecules in various systems equilibrated at room temperature are thought to be diffusive and nondirectional. We performed molecular dynamics simulations of a protein system and showed that the water molecules collectively move around the protein. The motions of two water molecules, which were about 12 A away from each other, are correlated to each other. Such collective motions of water can be regarded as flows around the protein, and the flows exhibited various coherent patterns: fair currents, vortices, and divergent flows. The patterns were highly fluctuating: a set of patterns changed to a different set of patterns within a time scale of 10 ps. Thus, the water motions observed in a scale of length smaller than 12 A and a time scale shorter than 10 ps were nondiffusive, and the motions above these scales were diffusive, where the flows disappeared. The flows near the protein surface had an orientational propensity to be highly parallel to the protein surface, and this propensity gradually vanished with an increment of distance from the protein surface. The divergent patterns of flows, which frequently emerge during the fluctuations of flows, may temporarily cause solvent drying in the vicinity of solutes. The current simulation is supportive of a molecular interaction mechanism that the fluctuations of hydration structure induce attractive interactions between solutes.  相似文献   

15.
We study the indentation of a free-standing lipid membrane suspended over a nanopore on a hydrophobic substrate by means of molecular dynamics simulations. We find that in the course of indentation the membrane bends at the point of contact and the fringes of the membrane glide downward intermittently along the pore edges and stop gliding when the fringes reach the edge bottoms. The bending continues afterward, and the large strain eventually induces a phase transition in the membrane, transformed from a bilayered structure to an interdigitated structure. The membrane is finally ruptured when the indentation goes deep enough. Several local physical quantities in the pore regions are calculated, which include the tilt angle of lipid molecules, the nematic order, the included angle, and the distance between neighboring lipids. The variations of these quantities reveal many detailed, not-yet-specified local structural transitions of lipid molecules under indentation. The force-indentation curve is also studied and discussed. The results make a connection between the microscopic structure and the macroscopic properties and provide deep insight into the understanding of the stability of a lipid membrane spanning over nanopore.  相似文献   

16.

Molecular dynamics simulation was applied to investigating the evolvement rule of cobalt melt microstructure during solidification at different cooling rates. The cooling rate for the formation of amorphous phase is determined by analyzing the radial distribution function, the H–A bond-type index and the mean square displacement. The simulation results showed that the nucleation undercooling increases with the initial temperature, and in the undercooling versus temperature curve, there are two inflection points. Besides, when the initial temperature reaches 2450 K, the undercooling will be stabilized at 1061 K. As the cooling rate is less than 1.0?×?1011.0 K s?1, the FCC and HCP crystal structures will be obtained. Amorphous structure will be obtained if the cooling rate is more than 1.0?×?1013.0 K s?1. If the cooling rate of the Co melt is between 1.0?×?1011.0 and 1.0?×?1013.0 K s?1, the crystal and amorphous structures will be coexistent, which indicates that the critical cooling rate of crystal–amorphous transition is 1.0?×?1011.0 K s?1.

  相似文献   

17.
A molecular dynamics program for arbitrary molecular mixtures is presented. All intramolecular degrees of freedom are treated explicitly, which means that the program is based on central forces only. A double time step technique has been devised in order to separate rapidly varying, covalent forces from slowly varying ones. Typically, the ratio between the different time steps is about 10, with only a minor computational effort spent in the evaluation of the covalent forces. The program source code is arranged so as to obtain maximal efficiency on a vector processor, while still being portable. On a Cray 1A, a typical simulation of an ion-chelate in aqueous solution with 984 atoms requires a total of 29 μs/interaction with a spherical cutoff distance of 10Å.  相似文献   

18.
The accurate characterization of the structure and dynamics of proteins in disordered states is a difficult problem at the frontier of structural biology whose solution promises to further our understanding of protein folding and intrinsically disordered proteins. Molecular dynamics (MD) simulations have added considerably to our understanding of folded proteins, but the accuracy with which the force fields used in such simulations can describe disordered proteins is unclear. In this work, using a modern force field, we performed a 200 μs unrestrained MD simulation of the acid-unfolded state of an experimentally well-characterized protein, ACBP, to explore the extent to which state-of-the-art simulation can describe the structural and dynamical features of a disordered protein. By comparing the simulation results with the results of NMR experiments, we demonstrate that the simulation successfully captures important aspects of both the local and global structure. Our simulation was ~2 orders of magnitude longer than those in previous studies of unfolded proteins, a length sufficient to observe repeated formation and breaking of helical structure, which we found to occur on a multimicrosecond time scale. We observed one structural feature that formed but did not break during the simulation, highlighting the difficulty in sampling disordered states. Overall, however, our simulation results are in reasonable agreement with the experimental data, demonstrating that MD simulations can already be useful in describing disordered proteins. Finally, our direct calculation of certain NMR observables from the simulation provides new insight into the general relationship between structural features of disordered proteins and experimental NMR relaxation properties.  相似文献   

19.
Molecular dynamics simulations of crystalline Staphylococcal nuclease in full and minimal hydration states were performed to study hydration effects on protein dynamics at temperatures ranging from 100 to 300 K. In a full hydration state (hydration ratio in weight, h=0.49), gaps are fully filled with water molecules, whereas only crystal waters are included in a minimal hydration state (h=0.09). The inflection of the atomic mean-square fluctuation of protein as a function of temperature, known as the glass-like transition, is observed at approximately 220 K in both cases, which is more significant in the full hydration state. By examining the temperature dependence of residual fluctuation, we found that the increase of fluctuations in the loop and terminal regions, which are exposed to water, is much greater than that in other regions in the full hydration state, but the mobilities of the corresponding regions are relatively restricted in the minimal hydration state by intermolecular contact. The atomic mean-square fluctuation of water molecules in the full hydration state at 300 K is 1 order of magnitude greater than that in the minimal hydration state. Above the transition temperature, most water molecules in the full hydration state behave like bulk water and act as a lubricant for protein dynamics. In contrast, water molecules in the minimal hydration state tend to form more hydrogen bonds with the protein, restricting the fluctuation of these water molecules to the level of the protein. Thus, intermolecular interaction and solvent mobility are important to understand the glass-like transition in proteins.  相似文献   

20.
The acetylcholinesterase enzyme (AChE) was immobilized on a chromatographic support to study the effect of magnesium on the binding mechanism of five AChE inhibitors (donepezil, tacrine, galanthamine, physostigmine and huperzine). The determination of the enthalpy and entropy changes of this binding at different magnesium concentration values suggested that van der Waals interactions and hydrogen bonds predominated the donepezil and tacrine association to AChE. As well, hydrophobic and electrostatic forces seemed to be the major interactions controlling the huperzine, galanthamine and physostigmine association with AChE. In addition, it appeared that magnesium cation increased the binding affinity of galanthamine and physostigmine to the active site gorge of AChE. A comparison of the inhibitors hydrophobicity to their relative bound percentage with AChE showed an affinity enhanced with the increase in the molecule hydrophobicity and confirmed that the hydrophobic forces played an important role in the AChEI-AChE binding process. This novel biochromatographic column could be useful to find a specific inhibitor for this enzyme and so open new perspectives to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号