首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding energies of the ground state of excitons in the GaAs/Ga1-xAlxAs square quantum-well wire in the presence of a magnetic field are investigated by using the variational method. It is assumed that the magnetic field is applied parallel to the axis of the wire. The calculations of the binding energy as a fimction of the wire size have been performed for infinite and finite confinement potentials. The contribution of the magnetic field makes the binding energy larger obviously, particularly for the wide wire, and the magnetic field is much more pronounced for the binding energy in a square quantum wire than that in a cylindrical quantum wire. The mismatch of effective masses between the well and the barrier is also considered in the calculation.  相似文献   

2.
Based on the Monte Carlo method, we simulate the magnetization curves with various magnetic field orientations for various single Co nanowires at room temperature. The simulated switching field as a function of angle between the field and the wire axis is consistent well with the experimental data. Correspondingly, the coercivity as a function of angle θ is presented, which together with the switching field plays an important role on explaining the magnetic reversal mechanism. It is found that the angular dependence of coercivity depends on the diameter of nanowires, and the coercivity and switching field versus θ deviate markedly from the prediction from the classical uniform rotation mode in the chain-of-sphere model. Furthermore, the magnetic reversal configurations display that magnetization reversal in the wires with small diameters is a nucleation-propagation process, and it is similar to the curling spread process in the larger wires.  相似文献   

3.
王龙庆  王为民 《中国物理 B》2014,23(2):28703-028703
Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.  相似文献   

4.
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.  相似文献   

5.
The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements. Finally, some basic experimental issues are discussed.  相似文献   

6.
The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements. Finally, some basic experimental issues are discussed.  相似文献   

7.
Through magnetization measurement with a SQUID magnetometer the heat treatment optimization of an international thermonuclear experimental reactor (ITER)-type internal-Sn Nb3Sn superconducting wire has been investigated. The irreversibility temperature T^* (H), which is mainly dependent on A15 phase composition, was obtained by a warming and cooling cycle at a fixed field. The hysteresis width △M(H) which reflects the flux pinning situation of the A15 phase is determined by the sweeping of magnetic field at a constant temperature. The results obtained from differently heat-treated samples show that the combination of T^* (H) with AM(H) measurement is very effective for optimizing the heat reaction process. The heat treatment condition of the ITER-type wire is optimized at 675℃/128 h, which results in a composition closer to stoichiometric Nb3Sn and a state with best flux pinning.  相似文献   

8.
By developing the recursive Green function method, the transport properties through a quantum wire embedding a finite-length saw-tooth superlattice are studied in the presence of magnetic field. The effects of magnetic modulation and the geometric structures of the superlattice on transmission coefficient are discussed. It is shown that resonant peak splitting of this kind of structure is different from that of ‘magnetic' and ‘electric' superlattices in two-dimensional electron gas. The transmission spectrum can be tailored to match requirements through adjusting the size of saw-tooth quantum dot and field strength.  相似文献   

9.
We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes- Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum.  相似文献   

10.
A method of measuring in-situ magnetic field gradient is proposed in this paper.The magnetic shield is widely used in the atomic magnetometer.However,there is magnetic field gradient in the magnetic shield,which would lead to additional gradient broadening.It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell,whose length of side is several centimeters.The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell,which is significant for the spin relaxation study.The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free(SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction.The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction,and the method proposed in this paper is independent of the intensity of the probe beam,which means that the method is independent of the cell's transmissivity.This feature makes the method more practical experimentally.Moreover,the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement.The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line.Furthermore,the residual magnetic fields are measured with +-σ-and σ-polarized pump beams,which can further suppress the effect of the AC-Stark shift.The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 p T/mm.  相似文献   

11.
程峰  颜波  柯敏  王育竹 《中国物理 B》2010,19(8):83205-083205
<正>We propose a wire configuration to create a one-dimensional(1D) array of magnetic microtraps for trapping ultracold atoms.The configuration is formed by replacing the central part of the Z-wire pattern with a zigzag wire. We simulate the performance of this pattern by the finite element method which can take both the width and depth of the wire into consideration.The result of simulation shows that this configuration can create magnetic microtraps which can be separated and combined by changing the bias magnetic field.We manage to split the Z-wire trap and prove that a similar result can occur for the new wire configuration.The fabrication processes of the atom chip are also introduced.Finally we discuss the loading method.  相似文献   

12.
An optical alignment-free and highly accurate method is employed to measure the magnetic field-dependent refractive index of magnetic fluid(MF)in bulk.The measured refractive index decreases significantly with the increasing magnetic strength and then tends to saturate in the high intensity range.By applying a tunable magnetic field ranging between 0 and 1661 Oe,the maximum shift of the refractive index of MF in bulk is found to be 0.0231.  相似文献   

13.
During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.  相似文献   

14.
During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.  相似文献   

15.
A numerical model for the unsteady flow under a pulsed magnetic field of a solenoid is developed, in which magnetohydrodynamic flow equations decouple into a transient magnetic diffusion equation and unsteady Navier–Stokes equations in conjunction with two equations of the k–ε turbulent model. A Fourier series method is used to implement the boundary condition of magnetic flux density under multiple periods of a pulsed magnetic field (PMF). The numerical results are compared with the theoretical or experimental results to validate the model under a time-harmonic magnetic field; it is found that the toroidal vortex pair is the dominating structure within the melt flow under a PMF. The velocity field of a molten melt is in a quasi-steady state after several periods; changing the direction of the electromagnetic force causes the vibration of the melt surface under a PMF.  相似文献   

16.
We propose a new lens scheme to focus cold atoms by using a controllable inhomogeneous magnetic field from a square current-carrying wire fabricated on a chip. The spatial distributions of the magnetic field are calculated, and the results show that the generated magnetic field is a two-dimensional (2D) quadrupole one and can be used to focus cold atoms or a cold atomic beam. The dynamic processes of cold atoms passing through our square wire layout and its focusing properties are studied by using Monte Carlo simulations. Our study shows that the atomic clouds can be focused effectively by our magnetic lens scheme, and the focal length of the atomic lens and its radius of focused spot can be continuously changed by adjusting the current in the wires.  相似文献   

17.
Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 ? ·μm to sub 200 ? ·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.  相似文献   

18.
For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylindrical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.  相似文献   

19.
The magnetic quadrupole-Ioffe configuration (QUIC) trap in our Bose-Einstein condensation experiment is introduced. The magnetic trap loading process after laser cooling is ana/ysed and the optimization of the loading process is studied experimentally, Calculation of the magnetic field explains the loss of the atoms during the loading process of the QUIC trap. The number of atoms loaded in the QUIC trap is increased by 40% after optimization in comparison with the normal loading process.  相似文献   

20.
By using the full-potential linearized augmented plane wave method to perform ab initio total energy calculations, we have explored magnetic ordering in one-dimensional Zr wires. The result shows that Zr can form linear, or dimerized, or zigzag wires, and the magnetic properties strongly depend on their geometric structures. The linear and zigzag wires exhibit ferromagnetic ground states at the equilibrium bonding distance, while the dimerized wire, despite its higher stability than that of the linear one, exhibits nonmagnetic ground states. The most stable geometry is shown to be the zigzag wire with a magnetic moment of 0.26μB per atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号