首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fluorescent nanoparticles containing covalently bound phenylboronic acids (~ 250 nm in diameter) are presented that respond to carbohydrates by swelling which is detected using fluorescence resonance energy transfer. The nanoparticles are characterized in terms of kinetics, response time and dynamic range. The response of the particles to glucose at pH 7.5 depends on the kind of phenylboronic acid and on ionic strength. The particles were immobilized in hydrogel sensor layers that enable continuous optical sensing of carbohydrates.  相似文献   

2.
We developed a carbohydrate sensing material, which consists of a crystalline colloidal array (CCA) incorporated into a polyacrylamide hydrogel (PCCA) with pendent boronic acid groups. The embedded CCA diffracts visible light, and the PCCA diffraction wavelength reports on the hydrogel volume. This boronic acid PCCA responds to species containing vicinal cis diols such as carbohydrates. This PCCA photonic crystal sensing material responds to glucose in low ionic strength aqueous solutions by swelling and red shifting its diffraction as the glucose concentration increases. The hydrogel swelling results from a Donnan potential due to formation of boronate anion; the boronic acid pK(a) decreases upon glucose binding. This sensing material responds to glucose and other sugars at <50 microM concentrations in low ionic strength solutions.  相似文献   

3.
Inverse opal films of molecularly imprinted polymers (MIP) were elaborated using the colloidal crystal template method. The colloidal crystals of silica particles were built by the Langmuir-Blodgett technique, allowing a perfect control of the film thickness. Polymerization in the interspaces of the colloidal crystal in the presence of bisphenol A (BPA) and removal of the used template provides 3D-ordered macroporous methacrylic acid-based hydrogel films in which nanocavities derived from bisphenol A are distributed within the thin walls of the inverse opal hydrogel. The equilibrium swelling properties of the nonimprinted (NIPs) and molecularly imprinted polymers (MIPs) were studied as a function of pH and bisphenol A concentration, while the molecular structures of the bulk hydrogels were analyzed using a cross-linked network structure theory. This study showed an increase in nanopore (mesh) size in the MIPs after BPA extraction as compared to NIPs, in agreement with the presence of nanocavities left by the molecular imprints of the template molecule. The resulting inverse opals were found to display large responses to external stimuli (pH or BPA) with Bragg diffraction peak shifts depending upon the hydrogel film thickness. The film thickness was therefore shown to be a critical parameter for improving the sensing capacities of inverse opal hydrogel films deposited on a substrate.  相似文献   

4.
pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pKa1 and pKa2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pKbs were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the vicinities of pKas of phosphate buffer on the swelling response could be explained by shrinkage of PHEMA hydrogel under high ionic environment. In addition, copolymerization of AA, VPA and HEMA was carried out which resulted in a pH sensor exhibiting a wider range of pH for color change.  相似文献   

5.
The structural evolution of Bragg diffracting inverse opal hydrogel sensors during swelling is directly observed by two-photon laser scanning fluorescence microscopy and compared to predictions from finite element analysis. A fluorescently labeled pH-sensitive hydrogel is UV-polymerized in a dried polystyrene colloidal crystal template, which is etched to yield an inverse opal. Fluorescence imaging of the hydrogel at different pH values reveals an inhomogeneous deformation of the FCC array of aqueous pores. The pores elongate along the sample normal direction and collapse along the sample parallel directions, consistent with the Bragg response, which indicates a 1-D increase in the interlayer distance. Interconnects between the pores serve as anchor points during hydrogel expansion into the pores. Pinning of the hydrogel to the substrate causes a change of the hydrogel lattice symmetry during deformation, from FCC (ABC stacking) to L1(1) (ABCA'B'C' stacking). Reconstructed cross-sections confirm that a 1-D increase in the interlayer distance along the substrate normal direction is responsible for the diffraction response of an inverse opal hydrogel sensor. Comparison with predictions from finite element analysis shows qualitative agreement, although the experimental mesostructure is significantly more deformed than the calculated data, due to buckling in the experimental system that is not captured by the model.  相似文献   

6.
Soft material hydrogel sensors have seen increased interest recently. Most of these sensors are used in an aqueous environment. In this study, we depart from this trend and analyze the ability of a periodic hydrogel structure to respond to variations in ambient humidity through an optical change. First, a polyacrylamide inverse opal hydrogel structure was created from a colloidal crystal template. Next, this material was tested under various humidity conditions and responded to these changes by shifting its optical reflection peak noticeably within the visible wavelength range. This effect opens the doors for these materials as humidity sensors. The kinetics of the peak shifts was also observed, showing a rapid response to ambient humidity changes. Finally, the structural dimension change is compared through peak shifts, Fabry-Perot fringes of the optical cavity, and scanning electron microscopy observations.  相似文献   

7.
Polyacrylic acid (PAA) and polyacrylamide (PAAm) double network (DN) hydrogels with high mechanical strength (about 1.5 MPa) are obtained when two kinds of monomer solutions of 4M AA with 5 mol% crosslinker and 4M AAm with 0.1 mol% crosslinker are used for the optimal preparation. Their high mechanical strength can be maintained even at high water content (above 50%) and at external stimuli (solvent and pH). This optimized DN hydrogel is used to develop the PAA/PAAm inverse opal hydrogel with DN structure by twice infiltration-polymerization and colloidal templating. Its photonic stop band can be tuned by controlling the solvent and pH. It first shows a small red-shift (about 20 nm), and then a large blue-shift (about 180 nm) with the increased ethanol content. For pH response, the DN inverse opal hydrogel has a large stop-band shift of about 140 nm when the pH increases from 1.2 to 5.6. Moreover, the DN inverse opal hydrogel also shows rapid recovery ability without hysteresis phenomenon in strong acidic environment, good reproducibility and durability. The interaction between the independently crosslinked PAA network and PAAm network plays a significant role in determining the response performance.  相似文献   

8.
将光子晶体与响应性水凝胶结合,采用“三明治”填充方法,以聚苯乙烯(PS)胶体晶体为模板,丙烯酰胺和烯丙基硫脲为单体制备得到一种对镉离子具有特异响应性的凝胶光子晶体传感膜,并对其进行了形貌表征和响应性研究。结果表明,该传感膜具有排列整齐的反蛋白石结构,可对不同浓度的Cd2+输出不同的光学信号。随着Cd2+浓度的增大,传感膜的Bragg衍射峰发生蓝移,并伴随有显著的颜色变化。在最优配比,适宜pH和离子强度条件下,衍射峰的最大位移值可达51.1 nm。在研究过程中发现其他干扰金属离子的存在不会影响传感膜对Cd2+的特异性响应,并且表现出了较快的响应速度。在多次循环实验中传感膜由于具备高度交联结构而表现出了良好的机械性和化学稳定性。该传感膜的构建为Cd2+的快速高效及裸眼可视检测提供了可能性。  相似文献   

9.
通过沉淀聚合法合成了P(NIPAM-co-AA)微凝胶,然后在EDC催化下用3-氨基苯硼酸对微凝胶进行改性,制备了P(NIPAMI-co-AAPBA)微凝胶.红外光谱检测证明改性完全.改性后的微凝胶仍具有很好的温敏性,但由于引入疏水的苯硼酸基团,微凝胶的体积相转变温度大大降低.P(NIPAM-co-AAPBA)微凝胶具...  相似文献   

10.
以丙烯酸(AA)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体, 采用水溶液聚合法制备了P(AA-DAC)聚电解质水凝胶. 采用红外光谱和核磁共振等方法对其结构进行了表征. 研究了不同组成比的聚电解质水凝胶在去离子水、不同pH值溶液以及不同离子强度盐溶液中的溶胀行为. 研究结果表明, 摩尔比为1∶1的聚电解质水凝胶表现出典型的两性聚电解质凝胶的溶胀行为. 离子强度对其溶胀行为有着显著影响, 在溶液离子强度较高时, 凝胶网络的溶胀主要受溶剂向凝胶内部扩散所控制, 满足Fick型扩散规律n≤0.5, 随着溶液离子强度的增加, 凝胶网络平衡含水量增加, 扩散系数增大.  相似文献   

11.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

12.
Fabrication of BaTiO3 Inverse Opal Photonic Crystal   总被引:1,自引:0,他引:1  
The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generation of photonic crystal. The template provided void space for infiltration of liquid precursor composed of titanium butyloxide, barium acetate, ethanol, and acetic acid. The opal composite was hydrolyzed, dried, sintered by heating for completely removing PS spheres to form BaTiO3 photonic crystals with inverse opal structure. The PS spheres were replaced by air spheres, which interconnected each other through the windows on the BaTiO3 wall.So both the BaTiO3 wall and air void constitute continuous phases.  相似文献   

13.
聚乙烯醇硫酸钾水凝胶电机械化学行为研究   总被引:1,自引:0,他引:1  
通过将交联聚乙烯醇硫酸酯化的方法制备了一种新型电刺激响应性聚乙烯醇硫酸钾(PVSK)智能水凝胶,并探讨了溶液离子强度和pH对PVSK水凝胶的溶胀吸水率、机械性能以及电机械化学行为的影响.结果表明,制备的PVSK水凝胶的平衡溶胀比随NaCl溶液离子强度的增大而减小,在pH2.39~10.83范围内基本不受溶液pH的影响;经不同离子强度和pH的NaCl溶液充分溶胀的PVSK水凝胶具有良好的机械性能,在非接触的直流电场作用下,该水凝胶向电场负极弯曲,凝胶的弯曲速度和弯曲偏转量随外加电场强度的增加而增大,随NaCl溶液离子强度的增大出现临界最大值,但不随溶液pH(2.08~10.53)的改变而改变;在循环电场作用下,PVSK水凝胶的电机械化学行为具有良好的可逆性.  相似文献   

14.
Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors.  相似文献   

15.
麦饭石含量对载药复合凝胶小球释药性能的影响   总被引:1,自引:0,他引:1  
以瓜尔胶-g-聚丙烯酸/麦饭石复合水凝胶(GG-g-PAA/MS)和海藻酸钠(SA)为原料,双氯芬酸钠(DS)为模拟药物,采用离子凝胶法制备了载药复合凝胶小球,考察了pH敏感性以及MS含量对复合凝胶小球的包封率、载药率、溶胀性和药物释放行为的影响.结果表明:凝胶小球具有明显的pH敏感性,在不同pH介质中溶胀率和释放速率...  相似文献   

16.
高强度PAMPS-PAAm互穿网络凝胶及其溶胀性能   总被引:1,自引:0,他引:1  
通过考察不同单体浓度或离子强度下凝胶的力学性能和溶胀特性,对聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)与聚丙烯酰胺(PAAm)形成的互穿网络凝胶的高强度性能和作用机理进行了研究.结果表明:PAMPS-PAAm互穿网络凝胶的力学强度对c(AMPS)存在一个最佳值(1 mol/L),且随c(AAM)的增大而显著增大(0.5~4 mol/L).当c(AMPS)=1 mol/L、c(AAM)=4 mol/L时,互穿网络凝胶的最大抗压强度达6.46 MPa;改变凝胶体系内水的离子强度,PAMPS-PAAm凝胶在0.25 mol/kg离子强度时的抗压强度与纯水状态下相比增加了29%.  相似文献   

17.
合成了一种磁性Fe3O4纳米颗粒稳定的水包油(O/W)Pickering乳液并以其作为交联剂,在适宜条件下引发单体丙烯酰胺聚合来制备了一种新型的磁性高强复合水凝胶.采用X射线衍射(XRD)及场发射扫描电子显微镜(SEM)分别对磁性Fe3O4纳米颗粒和复合水凝胶的结构进行了表征,结果表明Pickering乳胶粒子较均匀地分布在复合凝胶网络中.溶胀性能测试及溶胀动力学分析表明复合水凝胶具有良好的溶胀性能,能够吸收自身干重100倍左右的水,其溶胀过程不遵循Fickian扩散模型;拉伸测试表明该水凝胶具有优异的力学性能,其拉伸强度能够达到150 kPa左右,断裂伸长率能够达到300%左右,并且当其承受的应力释放后能快速地恢复到初始形态.磁性能测试的结果显示该水凝胶具有良好的磁性.  相似文献   

18.
This paper reports the preparation of a molecularly imprinted inverse opal hydrogel containing a 2D defect layer, by combining the Langmuir-Blodgett technique and the photonic crystal template method. By coupling the exceptional characteristics of molecularly imprinted polymers, sensitive to the presence of a target molecule, and those of photonic crystals in a single device, we could obtain a defect-embedded imprinted photonic polymer consisting in a three-dimensional, highly-ordered and interconnected macroporous array, where nanocavities complementary to analytes in shape and binding sites are distributed. As a proof of concept, we prepared a three-dimensional macroporous array of poly(methacrylic acid) (PMAA) containing molecular imprints of bisphenol A (BPA) and a planar defect layer consisting in macropores of different size. The optical properties of the resulting inverse opal were investigated using reflection spectroscopy. The defect layer was shown to enhance the sensitivity of the photonic crystal material, opening new possibilities towards the development smart optical sensing devices.  相似文献   

19.
Summary: Bovine serum albumin imprinted calcium phosphate/alginate hydrogel microspheres were prepared with sodium alginate (SA), (NH4)2HPO4, and using CaCl2 as gelling agent, bovine serum albumin (BSA) as template in inverse suspension. The optimized rebinding properties of BSA imprinted hydrogel microspheres were investigated by controlling pH value and ionic concentration from the viewpoint of adjusting the process of gelling, removing template and rebinding. The optimized pH values for the imprinting of BSA in gelling, removing template and rebinding process was 4.1, 8.3 and 4.8, respectively. The effect of NaCl concentration on the BSA rebinding was also determined. We provided a strategy to get the optimized imprinting efficiency by altering pH value and ionic concentration in a weakly ionic cross-linked hydrogel system on the process of protein's imprinting.  相似文献   

20.
Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fastpH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogelson controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO_2 in the region containing acid groups, which allowedduplicating inorganic colloidal crytals from colloidal crystal hydrogels (or macroporous products from macroporoushydrogels) via one step duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号