首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short peptide substrates with high specificity toward transglutaminase (TGase) enzyme were designed, characterized, and coupled to a biocompatible polymer, allowing for rapid enzymatic cross-linking of peptide-polymer conjugates into hydrogels. Eight acyl acceptor Lys-peptide substrates and three acyl donor Gln-peptide substrates were rationally designed and synthesized. The kinetic constants of these peptides toward tissue transglutaminase were measured by enzyme assay using RP-HPLC analysis with the aid of LC-ESI/MS. Several acyl donor and acyl acceptor peptides with high specificities toward TGase were identified, including a few containing the unusual amino acid l-3,4-dihydroxylphenylalanine (DOPA), which is found in the adhesive proteins secreted by marine and freshwater mussels. Acyl donor and acyl acceptor peptides with high substrate specificities were separately coupled to branched poly(ethylene glycol) (PEG) polymer molecules. Equimolar solutions of these polymer-peptide conjugates rapidly formed hydrogels in less than 2 min in the presence of transglutaminase under physiological conditions. The use of biocompatible building blocks, their rapid solidification from a liquid precursor under physiologic conditions, and the ability to incorporate adhesive amino acid residues using biologically benign enzymatic cross-linking are advantageous properties for the use of such materials for tissue repair, drug delivery, and tissue engineering applications.  相似文献   

2.
In this study, we conducted experiments using a response surface methodology to determine the optimal reaction conditions for the enzymatic synthesis of biodiesel from rapeseed oil and short-chained alkyl acetates, such as methyl acetate or ethyl acetate, as the acyl acceptor at 40 °C. Based on our response surface methodology experiments, the optimal reaction conditions for the synthesis of biodiesel were as follows: methyl acetate as acyl acceptor, catalyst concentration of 16.50%, oil-to-methyl acetate molar ratio of 1:12.44, and reaction time of 19.70 h; ethyl acetate as acyl acceptor, catalyst concentration of 16.95%, oil-to-ethyl acetate molar ratio of 1:12.56, and reaction time of 19.73 h. The fatty acid ester content under the above conditions when methyl acetate and ethyl acetate were used as the acyl acceptor was 58.0% and 62.6%, respectively. The statistical method described in this study can be applied to effectively optimize the enzymatic conditions required for biodiesel production with short-chained alkyl acetates.  相似文献   

3.
Two main drawbacks seriously restrict the synthetic value of proteases as reagents in peptide fragment coupling: (i) native proteolytic activity and, thus, risk of undesired peptide cleavage; (ii) limited enzyme specificities restricting the amino acid residues between which a peptide bond can be formed. While the latter can be overcome by the use of substrate mimetics achieving peptide bond formation at nonspecific ligation sites, the risk of proteolytic cleavage still remains and hinders the wide acceptance of this powerful strategy for peptide coupling. This paper reports on the effect of the trypsin point mutant Asp189Glu on substrate mimetic-mediated reactions. The effect of this mutation on the steady-state hydrolysis of substrate mimetics of the 4-guanidinophenyl ester type and on trypsin-specific Lys- and Arg-containing peptides was investigated. The results were confirmed by enzymatic coupling reactions using substrate mimetics as the acyl donor and specific amino acid-containing peptides as the acyl acceptor. The competition assay verifies the predicted shift in substrate preference from Lys and Arg to the substrate mimetics and, thus, from cleavage to synthesis of peptide bonds. The combination of results obtained qualifies the trypsin mutant D189E as the first substrate mimetic-specific peptide ligase.  相似文献   

4.
Feng  Yanbin  Zhang  Yunxiu  Ding  Wei  Wu  Peichun  Cao  Xupeng  Xue  Song 《Applied biochemistry and biotechnology》2019,188(3):824-835

Triacylglycerols are considered one of the most promising feedstocks for biofuels. Phospholipid:diacylglycerol acyltransferase (PDAT), responsible for the last step of triacylglycerol synthesis in the acyl-CoA-independent pathway, has attracted much attention by catalyzing membrane lipid transformation. However, due to lack of biochemical and enzymatic studies, PDAT has not carried forward in biocatalyst application. Here, the PDAT from Saccharomyces cerevisiae was expressed in Pichia pastoris. The purified enzymes were studied using different acyl donors and acceptors by thin layer chromatography and gas chromatography. In addition of the preferred acyl donor of PE and PC, the results identified that ScPDAT was capable of using broad acyl donors such as PA, PS, PG, MGDG, DGDG, and acyl-CoA, and ScPDAT was more likely to use unsaturated acyl donors comparing 18:0/18:1 to 18:0/18:0 phospholipids. With regard to acyl acceptors, ScPDAT preferred 1,2 to 1,3-diacylglycerol (DAG), while 12:0/12:0 DAG was identified as the optimal acyl acceptor, followed by 18:1/18:1 and 18:1/16:0 DAG. Additionally, ScPDAT reveals esterification activity that can utilize methanol as acyl acceptor to generate fatty acid methyl esters. The results fully expand the enzymatic selectivity of ScPDAT and provide fundamental knowledge for synthesis of triacylglycerol-derived biofuels.

  相似文献   

5.
2-O-alpha-D-Glucopyranosyl-6-O-octanoyl-L-ascorbic acid was enzymatically synthesized from 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G) and vinyl octanoate with a protease from Bacillus subtilis in pyridine. Furthermore, with various linear saturated fatty acid vinylesters as acyl donors, AA-2G was also converted to their corresponding 6-O-acyl AA-2G in the same manner. The reactivities of transacylation decreased with increasing length of the acyl groups. Thus, short chain acyl groups were transferred to AA-2G by this protease more efficiently than were long chain acyl groups. This enzymatic method is recommended for the synthesis of 6-Acyl-AA-2G with short or medium length chain acyl groups.  相似文献   

6.
Penicillin-binding protein 1b (PBP 1b) of the gram-positive bacterium Streptococcus pneumoniae catalyzes the cross-linking of adjacent peptidoglycan strands, as a critical event in the biosynthesis of its cell wall. This enzyme is representative of the biosynthetic PBP structures of the β-lactam-recognizing enzyme superfamily and is the target of the β-lactam antibiotics. In the cross-linking reaction, the amide between the -D-Ala-D-Ala dipeptide at the terminus of a peptide stem acts as an acyl donor toward the ε-amino group of a lysine found on an adjacent stem. The mechanism of this transpeptidation was evaluated using explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics calculations. Sequential acyl transfer occurs to, and then from, the active site serine. The resulting cross-link is predicted to have a cis-amide configuration. The ensuing and energetically favorable cis- to trans-amide isomerization, within the active site, may represent the key event driving product release to complete enzymatic turnover.  相似文献   

7.
A simple and rapid colorimetric coupled enzymatic assay for the determination of glutathione is described. The proposed method is based on the specific reaction catalyzed by γ-glutamyltransferase, which transfers the γ-glutamyl moiety from glutahione to an acceptor, with the formation of the γ-glutamyl derivative of the acceptor and cysteinylglycine. The latter dipeptide is a substrate of leucyl aminopeptidase, which hydrolyzes cysteinylglycine to glycine and cysteine that can be easily measured spectrophotometrically. The proposed method was used to measure the content of glutathione in acid extracts of bovine lens, to follow the NADPH-dependent reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) catalyzed by the enzyme glutathione reductase and to determine the glutathione content in human astrocytoma ADF cells subjected to oxidative stress. The results obtained showed that the method can be suitably used for the determination of GSH and GSSG in different biological samples and to monitor tissue or cell redox status under different conditions. It is also applicable for following reactions involving GSH and/or GSSG.
Fig
Colorimetric method for the specific measurement of glutathione. γ-glutamyltransferase (γ-GT) transfers the γ-glutamyl moiety from glutathione to an acceptor (Gly-Gly), with the formation of γ-glutamyl-Gly-Gly and Cys-Gly. The latter dipeptide is hydrolized by leucyl-aminopeptidase (LAP) to form cysteine, which can be easily measured using a colorimetric assay at 560 nm  相似文献   

8.
Seven dipeptide and one tripeptide conjugates of the cytotoxic drug 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid (DMQ-MA) conjugates were prepared successfully by an alcalase-catalyzed reaction in alcohols, using DMQ-MA-X-OMe as the acyl donor and H2N-Y-CONH2 as the nucleophile (where X and Y are amino acids, and amino acid/dipeptides, respectively).  相似文献   

9.
《Tetrahedron: Asymmetry》2005,16(3):615-622
Fatty acid esters of cyclodextrins (CDs) were synthesised in a one-step reaction with native CDs as acyl acceptors and vinyl-activated fatty acid esters as acyl donors. Immobilised preparations of thermolysin, subtilisin, the alkaline protease AL-89 and Candida antarctica lipase B were investigated for their catalytic properties regarding transesterification in solvents of increasing hydrophilicity. The synthesis of cyclodextrin fatty acid esters was proved to be catalysed enzymatically by thermolysin in DMSO. The obtained products were analysed by TLC and their structures characterised by NMR, MS and FTIR spectroscopy. With vinyl decanoate as acyl donor β-CD was esterified at all seven glucose C-2 positions resulting in heptakis(2-O-decanoyl)-β-cyclodextrin as the major product. With vinyl butyrate, substitution occurred at all the C-2 and partially at the C-3 or C-6 positions resulting in an average degree of substitution of nine. Between 20% and 25% (w/w) of the acyl donor was converted to esters in 20 h corresponding to an estimated total conversion of the acyl acceptor in the case of maltosyl-β-CD. In the subtilisin and AL-89 catalysed reactions, product formation was simultaneously catalysed non-enzymatically by inorganic buffer salts in aprotic, hydrophilic solvents and with the lipase no products were formed in any of the solvents investigated.  相似文献   

10.
Evaggelia Tsandi 《Tetrahedron》2009,65(7):1444-1135
Sulfonamides of the non-natural amino acid homoproline and the dipeptide Pro-Phe were synthesised and evaluated for their catalytic activity in Michael and aldol reactions. Sulfonamides of homoproline outperform proline and Pro-Phe in the Michael reaction, whereas sulfonamides of Pro-Phe lead to better results in the aldol reaction. The results of the present study show that the conversion of the carboxylic group of either homoproline or dipeptide Pro-Phe to the bioisosteric acyl sulfonamide group lead to improved organocatalysts.  相似文献   

11.
《Tetrahedron: Asymmetry》2000,11(5):1077-1083
Chiral dipeptides of phenylglycine were synthesized using immobilized Escherichia coli penicillin acylase. The high selectivity of penicillin acylase for l-amino acids as the nucleophile resulted in the efficient acylation of l-phenylglycine by d-phenylglycine amide at pH 9.7 to give d-phenylglycyl-l-phenylglycine in 69% yield. No isomers or tripeptides were formed. The low enantiospecificity of the enzyme for the acyl donor provided the possibility of preparing the corresponding l,l-dipeptides, starting from l-phenylglycine methyl ester as both donor and acceptor at pH 7.5, resulting in a 63% yield of l-phenylglycyl-l-phenylglycine methyl ester. The product precipitated under the reaction conditions; this effectively prevented the formation of oligomers as well as chemical transformation of the product.The dipeptide esters of phenylglycine easily cyclized to diketopiperazines in aqueous methanol. l-Phenylglycyl-l-phenylglycine methyl ester formed l,l-3,6-diphenylpiperazine-2,5-dione (cis); the achiral trans isomer was obtained from d-phenylglycyl-l-phenylglycine methyl ester.  相似文献   

12.
Kinetic resolution of (R,S)-2-butanol using enzymatic synthesis of esters has been studied. (R,S)-2-Butanol is commonly found as a racemic mixture, and the products of its esterification are racemic mixtures too. This work is of great significance in the field of the enzymatic kinetic resolution due to the little information found in literature about the resolution of (R,S)-2-butanol as pure compound. So, this article is a contribution about the enzymatic resolution of (R,S)-2-butanol. The reaction here studied is the esterification/transesterification of (R,S)-2-butanol in organic media (n-hexane) using as biocatalyst the lipase Novozym 435?. The main target of this study is to analyze the influence of certain variables in this reaction. Some of these variables are acyl donor (acids and esters), concentration of substrates, enzyme/substrate ratio, and temperature. The main conclusions of this study are the positive effect of higher substrates concentration (1.5 M) and larger amount of enzyme (13.8 g mol(-1) substrate) on kinetic resolution rate but not a very noticeable effect on enantiomeric excesses. The longer the carboxylic acid chain is, the better results are obtained. Besides to achieve a satisfactory kinetic resolution, it is recommendable to select reaction times (180 min) at which the highest substrate enantiomeric excess is reached (~60%). The temperature has not an appreciable influence on the resolution in the range studied (40-60 °C). When an ester (vinyl acetate) is used as acyl donor, the resolution shows better results than when using a carboxylic acid as acyl donor (ee(s)?~90% at 90 min). Moreover, Michaelis-Menten parameters, v(max) and K(M), were determined, 0.04 mol l(-1) min(-1) and 0.41 mol l(-1), respectively.  相似文献   

13.
A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening.  相似文献   

14.
Optimal conditions were found, for enzymatic synthesis of the dipeptide, N-acetyl-L-tryptophanyl-L-leucine amide in the biphasic system water - ethyl acetate. The synthesis was carried out using both free and. immobilized α-chymotrypsin. Optimization was performed, by such parameters as the “organic phase/aqueous phase” volume ratio, the pH of aqueous phase, and the concentration of starting reactants. Under most favourable condition the dipeptide was synthesized. on the preparative scale in ca. 100% yield. As a result of immobilization (adsorption on the Sorsilen terephtalate support) the enzyme practically did not inactivate and may be used repeatedly.  相似文献   

15.
The purpose of this work was to isolate, purify and partially sequence trypsin, chymotrypsin and elastase from the chicken pancreas. The extraction of the pancreatic zymogens with 0.5 M CaCl2 at pH 7.5 for 9 h appeared to be most effective in obtaining maximum recovery of the three enzymes. The sequential Cucurbita maxima trypsin inhibitor I/bovine pancreas trypsin inhibitor/soybean trypsin inhibitor affinity chromatography gave the best result for the isolation of trypsin, chymotrypsin and elastase, respectively, from the same extract. For each proteinase, multiple form of enzymatic activity could be observed after gel electrophoresis and each form was further purified on an ion-exchange column. The N-terminal amino acid sequence of trypsin and chymotrypsin showed homologies with the bovine enzymes whereas elastase showed homologies with the porcine enzyme. The molecular mass of trypsin, chymotrypsin and elastase were estimated to be 23,500, 25,700 and 25,000, respectively, which are values close to those in mammalian species. Although some kinetic constants (Km and k(cat)/Km) appeared different from those observed in other species, the pH dependent enzymatic activities were similar to those reported in other animal species.  相似文献   

16.
合成了光敏基团位于sn-1脂肪酰基上的光亲和标记磷脂酸(PA)类似物,选用了有较高C-H插入效率的全氟苯基叠氮化合物作为光敏基团.用酶化学方法在PA类似物中引入了同位素标记33P.初步实验表明,合成的PA类似物与天然PA一样对cAMP-磷酸二酯酶有激活作用,提示合成的PA类似物可进一步用于该酶的光亲和标记.  相似文献   

17.
Butirosin, an aminoglycoside antibiotic produced by Bacillus circulans, bears the unique (S)-4-amino-2-hydroxybutyrate (AHBA) side chain, which protects the antibiotic from several common resistance mechanisms. The AHBA side chain is advantageously incorporated into clinically valuable antibiotics such as amikacin and arbekacin by synthetic methods. Therefore, it is of significant interest to explore the biosynthetic origins of this useful moiety. We report here that the AHBA side chain of butirosin is transferred from the acyl carrier protein (ACP) BtrI to the parent aminoglycoside ribostamycin as a gamma-glutamylated dipeptide by the ACP:aminoglycoside acyltransferase BtrH. The protective gamma-glutamyl group is then cleaved by BtrG via an uncommon gamma-glutamyl cyclotransferase mechanism. The application of this pathway to the in vitro enzymatic production of novel AHBA-bearing aminoglycosides is explored with encouraging implications for the preparation of unnatural antibiotics via directed biosynthesis.  相似文献   

18.
[reaction: see text] Among six different group VIb oxometallic species examined, dioxomolybdenum dichloride and oxomolybdenum tetrachloride were the most efficient catalysts to facilitate nucleophilic acyl substitution (NAS) of anhydrides with a myriad array of alcohols, amines, and thiols in high yields and high chemoselectivity. In contrast to the well-recognized redox chemical behaviors associated with oxomolybdenum(VI) species, the catalytic NAS was unprecedented and tolerates virtually all kinds of functional groups. By using benzoic anhydride as a mediator for in situ generation of an incipient mixed anhydride-MoO(2)Cl(2) adduct with a given functional alkanoic acid, one can achieve oleate, dipeptide, diphenylmethyl, N-Fmoc-alpha-amino, pyruvic, and tert-butylthio ester, N-tert-butylamide, and trityl methacrylate syntheses with appropriate protic nucleophiles. The amphoteric character of the Mo=O unit in oxomolybdenum chlorides was found to be responsible for the catalytic NAS profile as supported by a control NAS reaction of using an authentic adduct-MoOCl(2)(O(2)CBu(t)())(2) between pivalic anhydride and MoO(2)Cl(2) as the catalyst.  相似文献   

19.
Activity of enzymes immobilized on microspheres with thermosensitive hairs   总被引:3,自引:0,他引:3  
Poly(N-isopropylacrylamide)s (PNIPAMs) carboxylated at one chain end or both ends were prepared by polymerization using 4,4-azobis(N,N,-cyanopentanoic acid) (V-501) as an initiator and β-mercaptopropionic acid (MPA) as a chain transfer reagent. One end group of PNIPAM carboxylated at both ends was conjugated with latex particles, and another with trypsin using carbodiimide. Differential scanning calorimetry (DSC) revealed that PNIPAM on the particles exhibited a drastic phase transition, and that the transition temperature was largely elevated when the enzyme was immobilized at the chain end. Therefore, PNIPAM on the particles showed two phase transitions because of the coexistence of the enzyme-conjugated and non-conjugated PNIPAMs. The activity of trypsin immobilized on the particles with the PNIPAM spacer showed significant temperature dependence. The apparent relative activity increased above the transition temperature of non enzyme-conjugated PNIPAM on the particles. One of the reasons for this is that the diffusion of the substrate changed discontinuously around the transition temperature. Therefore, the temperature dependence of the enzymatic activity was significantly affected by the molecular size of the substrates. The enzymatic activity was also influenced by the surface density of trypsin and PNIPAM on the particle, and the molecular weight of the PNIPAM spacer.  相似文献   

20.
A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号