首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ga-doped CdS thin films, with different [Ga]/[Cd] ratios, were grown using chemical bath deposition. The effect of Ga-doping on optical properties and bandgap of CdS films is investigated. Resistivity, carrier density, and mobility of doped films were acquired using Hall effect measurements. Crystal structure as well as crystal quality and phase transition were determined using X-ray diffraction (XRD) and Micro-Raman spectroscopy. Film morphology was studied using scanning electron microscopy, while film chemistry and binding states were studied using X-ray photoelectron spectroscopy (XPS). A minimum bandgap of 2.26 eV was obtained at [Ga]/[Cd] ratio of 1.7 × 10−2. XRD studies showed Ga3+ ions entering the lattice substitutionally at low concentration, and interstitially at high concentration. Phase transition, due to annealing, as well as induced lattice defects, due to doping, were detected by Micro-Raman spectroscopy. The highest carrier density and lowest resistivity were obtained at [Ga]/[Cd] ratio of 3.4 × 10−2. XPS measurements detect an increase in sulfur deficiency in doped films.  相似文献   

2.
以氯化铵、氯化镉、氢氧化钾和硫脲为反应物采用化学水浴法制备了硫化镉薄膜,为了作对比研究,采用射频磁控溅射以硫化镉为靶材,氩气为溅射气体,制备了硫化镉薄膜。采用X射线衍射、扫描电子显微镜和紫外-可见光光谱仪分别表征了硫化镉薄膜的结构、形貌和光学吸收特性。结果表明,采用以上两种方法制备的硫化镉均具有(002)择优取向,溅射法制备的硫化镉薄膜较致密,薄膜表面较光滑,平均晶粒尺寸在20~30nm;水浴法制备的硫化镉薄膜颗粒尺寸较小,缺陷较多。除了在短波段溅射所得硫化镉薄膜的透过率略差于水浴法所得硫化镉薄膜之外,溅射法制备的硫化镉薄膜的性能整体上优于水浴法制备的薄膜。两种方法制备的硫化镉薄膜的能隙在2.3~2.5eV。  相似文献   

3.
The effect of deposition time on the structural, electrical and optical properties of SnS thin films deposited by chemical bath deposition onto glass substrates with different deposition times (2, 4, 6, 8 and 10 h) at 60 °C were investigated. The obtained films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and optical absorption spectra. All deposited films were polycrystalline and had orthorhombic structure with small crystal grains. Their microstructures had changed with deposition time, and their compositions were nearly stoichiometric. Electrical parameters such as resistivity and type of electrical conduction were determined from the Hall Effect measurements. Hall Effect measurements show that obtained films have p-type conductivity and resistivity values of SnS films have changed with deposition time. For allowed direct, allowed indirect, forbidden direct and forbidden indirect transitions, band gap values varied in the range 1.30-1.97 eV, 0.83-1.36 eV, 0.93-1.49 eV and 0.62-1.23 eV, respectively.  相似文献   

4.
In this work thin CdS films using glycine as a complexing agent were fabricated by chemical bath deposition and then doped with silver (Ag), by an ion exchange process with different concentrations of AgNO3 solutions. The CdS films were immersed in silver solutions using different concentrations during 1 min for doping and after that the films were annealed at 200 °C during 20 min for dopant diffusion after the immersion on the AgNO3 solutions. The aim of this research was to know the effects of different concentrations of Ag on the optical and structural properties of CdS thin films. The optical band gap of the doped films was determined by transmittance measurements, with the results of transmittance varying between 35% and 70% up to 450 nm in the electromagnetic spectra and the band gap varying between 2.31 and 2.51 eV depending of the silver content. X-ray photoelectron spectroscopy was used to study the influence of silver on the CdS:Ag films, as a function of the AgNO3 solution concentration. The crystal structure of the thin CdS:Ag films was studied by the X-ray diffraction method and the film surface morphology was studied by atomic force microscopy. Using the ion exchange process, the CdS films’ structural, optical and electric characteristics were modified according to silver nitrate concentration used.  相似文献   

5.
The preparation of thin films of CdS by chemical bath deposition is mostly based on the utilisation of ammonia as a complexing agent for cadmium ions. Here we report on a technique based on sodium citrate dihydrate that eliminates the problems of ammonia volatility and toxicity. The crystallites with a size range of 10–20 nm in diameter with zinc blend (cubic) and wurtzite (hexagonal) crystal structures and strong photoluminescence were prepared from the mixture solutions of: cadmium chloride dihydrate as a cadmium source, thiourea as a sulfur source and sodium citrate dihydrate as a complexing agent for cadmium ions. The well-cleaned glass used as a substrate for thin film deposition. The obtained samples were characterized by the techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscope (AFM) and fluorescence spectroscopy. Also, the effect of two operating conditions, (i) pH, and (ii) the temperature of reaction on the synthesizing of CdS nanocrystals was examined. Finally, it was found that the CdS nanocrystals showed sharp excitation features and strong ”band-edge” emission.  相似文献   

6.
7.
Zinc oxide thin films (ZnO, ZnO:Li, ZnO:Al) were deposited on glass substrates by a sol-gel technique. Zinc acetate, lithium acetate, and aluminum chloride were used as metal ion sources in the precursor solutions. XRD analysis revealed that Li doped and undoped ZnO films formed single phase zincite structure in contrast to Al:ZnO films which did not fully crystallize at the annealing temperature of 550 °C. Crystallized films had a grain size under 50 nm and showed c-axis grain orientation. All films had a very smooth surface with RMS surface roughness values between 0.23 and 0.35 nm. Surface roughness and optical band tail values increased by Al doping. Compared to undoped ZnO films, Li doping slightly increased the optical band gap of the films.  相似文献   

8.
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5–15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.  相似文献   

9.
Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98−xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd–Fe–S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.  相似文献   

10.
In this paper we report detail investigation and correlation between micro-structural and optical properties of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure. The influence of the microstructure of the nc-Si thin films on their optical properties was investigated through an extensive characterization. The effect of anodisation currents on the microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM) and transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). The optical constants (n and k as a function of wavelength) of the films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The silicon layer (SL) was modeled as a mixture of void, crystalline silicon and aluminum using the Bruggeman approximation. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties. A very bright photoluminescence (PL) was obtained and find to depend on anodisation current.  相似文献   

11.
12.
In this paper, we report structural, morphological, electrical studies of copper iodide (CuI) thin films deposited onto glass substrates by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) methods. CuI thin films were characterized for their structural, morphological and wettability studies by means of X-ray diffraction (XRD), FT-Raman spectroscopy, scanning electron microscopy (SEM), optical absorption, and contact angle measurement methods. Thickness of thin films was 1 ± 0.1 μm measured by gravimetric weight difference method. The CuI thin films were nanocrystalline, with average crystal size of ~60 nm. The FT-IR study confirmed the formation of CuI on the substrate surface. SEM images revealed the compact and cube like structure for CuI thin films deposited by CBD and SILAR methods, respectively. Optical absorption study revealed optical energy gaps as 2.3 and 3.0 eV for CBD and SILAR methods, respectively. Wettability study indicated that CuI thin films deposited by SILAR method are more hydrophobic as compared to CBD method.  相似文献   

13.
Chemically deposited cadmium sulphide (CdS) films have been grown on glass at 60 °C and annealed at nitrogen atmosphere at different temperatures. The as-deposited film shows a mix phase of cubic and hexagonal. Once the film subjected to annealing the hexagonal phase becomes dominant and the crystal size increases due to these changes optical band gap energy decreases from 2.44 to 2.28 eV. The electrical conductivity increases depending on temperature and the film annealed at 423 K shows the highest conductivity. Thermoluminescence (TL) intensity of the films was measured after irradiating the films with 90Sr/90Y β-source and the trap depths were calculated after the TL curves deconvoluted by using the computer glow curve deconvolution (CGCD) method. It is observed that the as-deposited film has three different trap depths, at around 0.257, 0.372, and 0.752 eV corresponding to 383, 473, and 608 K, respectively.  相似文献   

14.
Molecular beams of size-selected silicon clusters were used to grow nanocrystalline thin films. This technique allows the control of both average size and size dispersion of Si nanocrystals, and is then very useful to provide model materials for the study of the luminescence in silicon. We report results obtained by high-resolution electron microscopy, Raman spectrometry and photoluminescence spectroscopy.  相似文献   

15.
Bismuth oxide thin films have been deposited by room temperature chemical bath deposition (CBD) method and annealed at 623 K in air. They were characterized for structural, surface morphological, optical and electrical properties. From the X-ray diffraction patterns, it was found that after annealing a non-stoichiometric phase, Bi2O2.33, was removed and phase pure monoclinic Bi2O3 was obtained. Surface morphology of Bi2O3 film at lower magnification SEM showed rod-like structure, however, higher magnification showed a rectangular slice-like structure perpendicular to substrate, giving rise to microrods on the surface. The optical studies showed the decrease in band gap by 0.3 eV after annealing. The electrical resistivity variation showed semiconductor behavior and from thermoemf measurements, the electrical conductivity was found to be of n-type.  相似文献   

16.
Synthesis of CuS thin films by microwave assisted chemical bath deposition   总被引:1,自引:0,他引:1  
In this study, oriented CuS nanoplates standing perpendicularly on F: SnO2 (FTO) coated glass substrates have been prepared through a mild microwave assisted chemical bath deposition process in which copper acetate reacted with ethylenediamine tetraacetate acid disodium and thioacetamide in aqueous solution within 40 min. The effects of reaction time and microwave radiation on the treatment process were investigated. The morphology, structure, and composition of the yielded nanostructures have been confirmed by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and scanning electron microscope (SEM). Also, the correlation between the reflectance, transmittance coefficient in the UV and the thickness of films was established. Furthermore, a two-point probe was used for resistivity measurements. We believe this simple chemical conversion technique can be further extended to the synthesis of other semiconductors with various morphologies.  相似文献   

17.
Nanocrystalline zinc oxide (ZnO) thin films have been deposited by spin-coating polymeric precursors synthesized by the citrate precursor route using ethylene glycol and citric acid as chelating agents. The ZnO thin films were annealed in air at different temperatures for 10 min. The films were characterized by different structural and optical techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectroscopy, and photoluminescence (PL). The thermal decomposition of polymeric precursor was studied by thermogravimetric analysis (TGA). XRD analysis with grazing incidence and rocking curves indicate that the ZnO films are polycrystalline with preferential orientation along the c-axis direction with a full-width at half-maximum (FWHM) of 0.31° for 600 °C-annealed samples. On annealing, the texturing in films increased along with a decrease in FWHM. AFM micrographs illustrate that the ZnO films are crack-free with well-dispersed homogeneous and uniformly distributed spherical morphology. The synthesized ZnO thin films have transparency >85% in the visible region exhibiting band edge at 375 nm, which becomes sharper with anneal. Room temperature PL spectra of these films show strong ultraviolet (UV) emission around 392 nm with an increase in intensity with annealing temperature, attributed to grain growth. Deconvolution of the PL spectra reveals that there is coupling of free excitons with higher orders of longitudinal optical (LO) phonon replicas leading to a broad asymmetric near-band-edge peak.  相似文献   

18.
A chemical synthesis process for the fabrication of CdO nanowires is described. In the present work, transparent and conductive CdO films were synthesized on the glass substrate using chemical bath deposition (CBD) at room temperature. These films were annealed in air at 623 K and characterized for the structural, morphological, optical and electrical properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical and electrical resistivity. The XRD analysis showed that the as-deposited amorphous can be converted in to polycrystalline after annealing. Annealed CdO nanowires are 60-65 nm in diameter and length ranges typically from 2.5 to 3 μm. The optical properties revealed the presence of direct and indirect band gaps with energies 2.42 and 2.04 eV, respectively. Electrical resistivity measurement showed semiconducting behavior and thermoemf measurement showed n-type electrical conductivity.  相似文献   

19.
Poly (3-methyl thiophene) thin films were prepared by chemical bath deposition technique on glass substrate; the prepared thin films were characterized for structural, morphological and optical properties. The variation in the oxidant concentration has an influence on the properties of the P3MeT thin films. The increase in the oxidant concentration leads to increase in the thickness of the film. The binding energy increases due to increase in oxidation concentration. The P3MeT thin films show smooth surface morphology with increase in oxidant concentration whereas the contact angle of the thin film decreases with increase in oxidant concentration. The optical absorbance of these thin films was found to increase with decrease in the optical band gap due to increase in oxidant concentration.  相似文献   

20.
Nanoparticles of lead sulfide (PbS) have been grown within the pores of polyvinyl alcohol (PVA) matrix on glass substrates by chemical bath deposition at and below room temperature (30 °C). Lead acetate and thiourea, dissolved in an alkaline medium, were taken as the sources of lead and sulfur. X-ray diffraction and selected area electron diffraction studies confirmed the cubic nanocrystalline PbS phase formation. Transmission electron micrograph of the films revealed the particle size lying in the range 10–20 nm. X-ray photoelectron spectroscopic studies confirmed the presence of lead and sulfur in the films, and their atomic ratios were found to be dependent on the deposition temperature. UV–vis spectrophotometric measurement showed a direct allowed band gap lying in the range 2.40–2.81 eV, which is much higher than the bulk value (0.41 eV). The band gap decreases with the increase of deposition temperature. The dielectric constant of the PVA-capped nanocrystalline PbS was in the range 155–265 at higher frequencies, which is much higher compared to only PVA and bulk PbS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号