首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metallic materials are the most used materials as orthopaedic or dental implants for their excellent mechanical properties. However, they are not able to create a natural bonding with the mineralized bone and they could release metallic particles that could finally end in the removal of the implant. One way to avoid these effects is to protect the metallic implant with a biocompatible coating. In this work there are analyzed two kinds of protective organic-inorganic sol-gel made coatings with the adding of glass-ceramic particles with the aim of generating bioactivity. The samples are surface characterized by SEM, XRD and XPS. Amorphous hydroxyapatite (aHAp) deposited on the samples after 30 days of immersion in simulated body fluid (SBF) is detected on the samples and its presence is considered as a first signal of bioactivity.  相似文献   

2.
The Cavalieri and Vertical Sections methods of design based stereology were applied in combination with 3 tesla (i.e. 3 T) Magnetic Resonance Imaging (MRI) to estimate cortical and subcortical volume, area of the pial surface, area of the grey–white matter boundary, and thickness of the cerebral cortex. The material comprises eight human cadaveric cerebri which had been separated into sixteen cerebral hemisphere specimens prior to embedding in agar gel. The results from MRI were compared with corresponding ‘gold standard’ values subsequently obtained by application of the same methodology using physical sectioning of the specimens.  相似文献   

3.
While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.  相似文献   

4.
Anodic oxidation was used to grow porous layers on titanium discs. Six different oxidation procedures were used producing six different surfaces. The implants were inserted in rat bone (tibia) for 7 days. After implant retrieval, mineralization (hydroxyapatite formation) on the implant surfaces was investigated using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Bone tissue around the implants was sectioned and stained. The amount of bone in close apposition to the implant was calculated. The porosity showed great variation between the surfaces. Hydroxyapatite was detected on all surfaces. A slight positive correlation between porosity and mineralization was found, although the most porous surface was not the best mineralized one. Bone had formed around all implants after 7 days. The bone-to-metal contact for the porous implants did not differ significantly from the non-porous control. Porosity is known to influence cellular events. The results indicate that porosity could have an initial, positive influence on bone integration of implants, by stimulating the mineralization process. The methods used were found to be suitable tools for investigation of initial healing around implants in bone.  相似文献   

5.
The effect of high dose isoflurane on cerebral blood flow (CBF) was investigated in adult macaque monkeys receiving 1% to 2% isoflurane with the pseudo continuous arterial-spin-labeling (pCASL) MRI technique. High concentration (2%) of isoflurane resulted in significant increase in the mean CBF of the global, cortical, subcortical regions and the regional CBF in all subcortical structures and most cortical structures (such as motor cortex, anterior cingulate cortex, but not media prefrontal cortex). In addition, the changes of regional CBF in the affected regions correlated linearly with increasing isoflurane concentrations. The study demonstrates region-specific CBF abnormal increase in adult macaque monkeys under high dose (2%) isoflurane and suggests that the brain functionality in the corresponding structures may be affected and need to be taken consideration in either human or non-human primate neuroimaging studies.  相似文献   

6.
In this work was investigated numerically and experimentally a simple laser doping method employing borosilicate (BSG) glass films as dopant sources which are deposited onto Si by the spin-coating technique. Both short (20 ns) and long (200 ns) pulse duration Excimer laser beams were used to deposit a large amount of energy in short time onto the near-surface region. Under suitable conditions, the irradiation leads to surface melting and dopant incorporation by liquid phase diffusion from the surface. Boron distribution profiles in the two-pulse duration regimes were studied as well as their electrical properties, and the junction formation of less than 25 nm in depth was demonstrated.  相似文献   

7.
Biological fixation of endosseous implants   总被引:2,自引:0,他引:2  
Primary implant stability is ensured by a mechanical fixation of implants. However, during implant healing a biological anchorage is necessary to achieve final osseointegration.

Aim of this study was to investigate the histological aspects of biological fixation around titanium screws.

Forty-eight titanium screws with different surfaces (smooth, plasma sprayed, sand blasted) were inserted in tibiae and femura of sheep and analyzed by light microscope and SEM 1 hour, 14 and 90 days after implantation.

One hour after implantation the implant-bone gap was filled with a blood clot and host bone chips arising from burr surgical preparation or friction during implant insertion. Fourteen days after implantation new trabecular bone and enveloped bone chips were observed in the gap: no osteogenesis developed where implant threads were in contact with host bone. Ninety days after surgery all trabecular bone and most of the bone chips were substituted by a mature lamellar bone with few marrow spaces.

Our results suggest that the trabecular bone and bone chips represent a three-dimensional network ensuring a biological implant fixation in all different implant surfaces 2 weeks after surgery. Host bone chips could favour the peri-implant osteogenesis. Inter-trabecular and implant-trabecular marrow spaces of both trabecular and lamellar bone may favour the peri-implant bone turnover.  相似文献   


8.
Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface. Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary stability, biological fixation and final osseointegration.

An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a biological turnover occurs in the peri-implant bone up to 1 mm from the implant surface, with both osteogenesis and bone reabsorption processes.  相似文献   


9.
This study was carried out to quantify the effect of an alkali-modified surface on the bone–implant interface formation during healing using an animal model. A total of 24 screw-shaped, self-tapping, (c.p.) titanium dental implants, divided into test group B—implants with alkali-modified surface (Bio surface) and control group M—implants with turned, machined surface, were inserted without pre-tapping in the tibiae of three beagle dogs. The animals were sacrificed after 2, 5 and 12 weeks and the bone–implant contact (BIC%) was evaluated histometrically. The surface characteristics that differed between the implant surfaces, i.e. specific surface area, contact angle, may represent factors that influence the rate of osseointegration and the secondary implant stability. The alkali-treated surface enhances the BIC formation during the first 2–5 weeks of healing compared to the turned, machined surface.  相似文献   

10.
Osseointegration of dental implants remains poorly understood. The objective of this numerical study is to understand the propagation phenomena of ultrasonic waves in prototypes cylindrically shaped implants and to investigate the sensitivity of their ultrasonic response to the surrounding bone biomechanical properties. The 10 MHz ultrasonic response of the implant was calculated using a finite difference numerical simulation tool and was compared to rf signals taken from a recent experimental study by Mathieu et al. [Ultrasound Med. Biol. 37, 262-270 (2011a)]. Reflection and mode conversion phenomena were analyzed to understand the origin of the different echoes and the importance of lateral wave propagation was evidenced. The sensitivity of the ultrasonic response of the implant to changes of (i) amount of bone in contact with the implant, (ii) cortical bone thickness, and (iii) surrounding bone material properties, was compared to the reproducibility of the measurements. The results show that, either a change of 1 mm of bone in contact with the implant, or 1.1 mm of cortical thickness or 12% of trabecular bone mass density should be detectable. This study paves the way for the investigation of the use of quantitative ultrasound techniques for the evaluation of bone-implant interface properties and implant stability.  相似文献   

11.
Interaction of a TEA CO2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm2 in the surrounding of air, N2, O2 or He. The energy absorbed from the TEA CO2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N2 and O2, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.  相似文献   

12.
ObjectivesTo assess the contribute of intra-prosthetic MRI virtual navigation for evaluating breast implants and detecting implant ruptures.MethodsForty-five breast implants were evaluated by MR examination. Only patients with a clinical indication were assessed. A 1.5-T device equipped with a 4-channel breast coil was used by performing axial TSE-T2, axial silicone-only, axial silicone suppression and sagittal STIR images. The obtained dicom files were also analyzed by using virtual navigation software. Two blinded radiologists evaluated all MR and virtual images. Eight patients for a total of 13 implants underwent surgical replacement. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were calculated for both imaging strategies.ResultsIntra-capsular rupture was diagnosed in 13 out of 45 (29%) implants by using MRI. Basing on virtual navigation, 9 (20%) cases of intra-capsular rupture were diagnosed. Sensitivity, specificity, accuracy, PPV and NPV values of 100%, 86%, 89%, 62% and 100%, respectively, were found for MRI. Virtual navigation increased the previous values up to 100%, 97%, 98%, 89% and 100%.ConclusionIntra-prosthetic breast MR virtual navigation can represent an additional promising tool for the evaluation of breast implants being able to reduce false positives and to provide a more accurate detection of intra-capsular implant rupture signs.  相似文献   

13.
The biocompatibility of titanium implants in bone depends on the response shown by cells in contact with the implant surface. Several developments have been targeted at achieving successful implant treatment. The aim of this study was to develop a novel preparation procedure to evaluate the bone cell response produced at the bone–implant interface using the technique scanning electron microscopy with backscattered electron imaging (SEM-BSE). Dental prostheses with an SLA-modified or TOP-modified surface were implanted in a toothless part of the mandibula in female pigs. The animals were sacrificed 12 weeks after surgery, at which time block specimens containing the implants were obtained. These specimens were then processed for SEM-BSE by optimizing a protocol involving chemical fixation and heavy metal staining. In addition, element distribution maps for the implant–bone tissue interface were obtained using a microanalytical system based on energy-dispersive X-ray spectrometry (EDS). This novel visualisation approach enabled a comprehensive study of the extracellular matrix and cell components of the host tissues neoformed around the implant. SEM-BSE images also provided ultrastructural details of the bone cells. This technique appears to be an effective and very promising tool for detailed studies on the implant–bone tissue interface and the host response to the bone incorporation process.  相似文献   

14.
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-l-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.  相似文献   

15.
Silicone breast implants are used for breast augmentation and breast reconstruction. The issues of concern associated with such implants are: (a) the quality control of each implant before implantation, and (b) the detection of implant bleeding after implantation. We have studied the use of the Nuclear Magnetic Resonance-MObile Universal Surface Explorer (NMR-MOUSE) for the nondestructive testing of (a) the quality of implant shells, and (b) changes in implant gel due to leakage of body fluid into the implant. Depth profiles measured nondestructively through implant shells at different positions of each implant by the Profile NMR-MOUSE assured good reproducibility of the quality and thickness of different shell layers. The leakage of implants upon rupture was mimicked by observing changes in the transverse NMR relaxation time of the implant gel upon ingress of physiological saline solution and safflower oil through the rupture. Results demonstrate that nondestructive testing with unilateral NMR is a potential method for use in the quality control of implants and for the screening of implants for rupture after implantation.  相似文献   

16.
Over the past decade, a number of interventions for durable cartilage repair have emerged. Magnetic resonance (MR) tomography is an excellent noninvasive method for monitoring cartilage repair tissues throughout the postsurgical period. However, evaluating cartilage morphology after matrix-based autologous cartilage implantation (ACI) with MR imaging (MRI) still remains a challenge. In this study, we combined a high-resolution cartilage-sensitive fast-spin echo (FSE) sequence with intravenous application of a contrast agent for enhancing synovial fluid. Two independent musculoskeletal radiologists interpreted the pictures for the thickness, length and surface of the cartilage implants. A multivariate two-way analysis of variance with two repeated measures was performed and showed that evaluation of cartilage implant morphology was significantly improved after the application of gadodiamide on proton density FSE images. Contrast-enhanced MRI of articular cartilages is a promising technique in the postoperative follow-up of patients after ACI.  相似文献   

17.
The origin and fate of cortical ischemic lesions, showing a stratified appearance at in vivo MRI-examination, was studied on rats in which a focal brain ischemia was induced by occlusion of the middle cerebral artery. One week after ischemia induction, six rats were selected in which three layers of different intensity were visible in the lesioned cortex. Two animals were sacrificed and studied by histology and electron microscopy. The external hyperintense layer was composed of pial and lesioned nervous tissue, the intermediate of degenerating nervous tissue in which an accumulation of macrophages was found, the deepest of edematous nerve tissue without a marked accumulation of macrophages. The remaining rats underwent further MRI examinations showing that, in the lesioned areas, cerebral blood volume was 14-69% lower than the contralateral healthy cortex. At histological and ultrastructural examination, a large part of the lesion was occupied by enlarged pial tissue and marginal glia. A dilatation of the ventricular cavity and cystic structures were also visible. In three animals an increase of the transverse diameter of the caudo-putamen ipsilateral to the lesion was found. The study suggests that the layered appearance is mainly due to an accumulation of macrophages in the intermediate layer and that several processes contribute to the occlusion of the space created by the removal of the necrotic tissue in stratified ischemic lesions (i.e. expansion of the pial tissue, thickening of the marginal glia; expansion of the caudo-putamen, enlargement of the ventricular cavity and development of cystic structures).  相似文献   

18.
Implant healing was studied with regard to the mineralization of the implant-tissue interface. Titanium discs were surface-modified and implanted in rat tibia for 4 weeks. After implantation, the bone was embedded in resin and cross sections of bone and implant were made using a low speed saw equipped with a diamond wafering blade. The sections were analyzed with imaging TOF-SIMS using a Bi3+ cluster ion source. This ion source has recently been shown to enable identification of hydroxyapatite (HA) fragments in bone samples. The area within 40 μm from the implant surface was selected for analysis, corresponding to bone-implant interface, from which positive spectra were recorded. In conclusion, differences were observed between the implants tested regarding signal intensity of fragments specific for HA. Coating of the implants with magnesium and porosity were shown to influence the mineral content of the bone-implant interface. This technique might be useful for biocompatibility assessment and for studying the mineralization process at implant surfaces.  相似文献   

19.
The differences between two models of cerebral ischemia [middle cerebral arterial transection (MCAT) and cortical photothrombosis (PT)] were explored with multiparametric MRI of apparent diffusion coefficient trace (ADCtr), cerebral blood flow (CBF) and T1. Microtubule-associated protein-2 (MAP2) immunoreactivity sections aligned with the MR images in the same coronal plane were used to map the infarct and to guide region-of-interest selection. In ischemic cortex, the larger T1 increase in PT versus MCAT (42+/-7% vs. 16+/-5%) is related to the different character of edema between these models; yet, neither CBF nor ADCtr discriminated between them at 3.5 h, suggesting that different mechanisms of ischemic damage to the brain cells resulted in the same ADCtr value. CBF and ADCtr were depressed in immediately adjacent ischemic border by 27+/-7% and 47+/-10%, respectively, in MCAT but not in PT, suggesting marginal perfusion in MCAT. CBF in homotopic normal cortex in the opposite hemisphere was higher for PT compared with MCAT (199+/-20 and 134+/-10 ml/100 g/min, respectively). Different pathological processes in the two models affect CBF, ADCtr and T1 in a unique, regionally specific manner. The PT model differs substantially from the MCAT and is not a model of cortical ischemia with an appreciable border zone.  相似文献   

20.
Small titanium particles may detach from titanium plasma sprayed (TPS) implants during implant insertion, when no preliminary tapping is used, probably for the frictional force between titanium coating and host bone. Aim of this study was to investigate the destination of these titanium particles observed in the peri-implant environment. Twenty-four TPS screws were implanted in tibiae of two sheep. Fourteen and 90 days after implantation the implants with the surrounding bone were removed and processed to be analyzed by light microscope and scanning electron microscope (secondary electron and back-scattered electron probes). Small titanium particles detached from the unloaded TPS implants were observed both in the newly-formed bone matrix and in marrow tissue. Histomorphometric analysis showed that both at 14 and 90 days after implantation the titanium particles appeared more concentrated in marrow tissue than in calcified bone matrix, decreasing by 66.4% over time. In particular, smaller particles (<250 microm(2)) decreased by 81.5%, whereas the larger ones (250-2000 microm(2)) did not show any significant variations over time, suggesting that most of the smaller particles may undergo to ionic dissolution, probably migrating into the peri-implant marrow lacunae. A slight migration of titanium particles from the implant surface towards the more distant peri-implant tissues was also demonstrated over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号