首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-cell receptor of a CD8(+) T-cell recognises peptide epitopes bound by class I major histocompatibility complex (MHC) glycoproteins presented in a groove on their upper surface. Within the groove of the MHC molecule are 6 pockets, two of which mostly display a high degree of specificity for binding amino acids capable of making conserved and energetically favourable contacts with the MHC. One type of MHC molecule, HLA-B*2705, preferentially binds peptides containing an arginine at position 2. In an effort to increase the affinity of peptides for HLA-B*2705, potentially leading to better immune responses to such a peptide, we synthesised two modified epitopes where the amino acid at position 2 involved in anchoring the peptide to the class I molecule was replaced with the alpha-methylated beta,gamma-unsaturated arginine analogue 2-(S)-amino-5-guanidino-2-methyl-pent-3-enoic acid. The latter was prepared via a multi-step synthetic sequence, starting from alpha-methyl serine, and incorporated into dipeptides which were fragment-coupled to resin-bound heptameric peptides yielding the target nonameric sequences. Biological characterisation indicated that the modified peptides were poorer than the native peptides at stabilising empty class I MHC complexes, and cells sensitised with these peptides were not recognised as well by cognate CD8(+) T-cells, where available, compared to those sensitised with the native peptide. We suggest that the modifications made to the peptide have decreased its ability to bind to the peptide binding groove of HLA-B*2705 molecules which may explain the decrease in recognition by cytotoxic T-cells when compared to the native peptide.  相似文献   

2.
Glycopeptides of tumor‐associated mucin MUC1 are promising target structures for the development of antitumor vaccines. Because these endogenous structures were weakly immunogenic, they were coupled to immune‐response‐stimulating T‐cell epitopes and the Pam3Cys lipopeptide to induce strong immune responses in mice. A new thioether‐ligation method for the synthesis of two‐ and three‐component vaccines that contain MUC1 glycopeptides as the B‐cell epitopes, a T‐cell epitope peptide, and the Pam3CSK4 lipopeptide is described. The resulting fully synthetic vaccines were used for the vaccination of mice, either in a liposome with Freund′s adjuvant or in aqueous PBS buffer. The three‐component vaccines that contained the Tetanus Toxoid P2 T‐cell epitope peptide induced strong immune responses, even when administered just in PBS. By activation of the complement‐dependent cytotoxicity (CDC) complex, the antisera induced the killing of tumor cells.  相似文献   

3.
T-lymphocyte (T-cell) is a very important component in human immune system. T-cell epitopes can be used for the accurately monitoring the immune responses which activation by major histocompatibility complex (MHC), and rationally designing vaccines. Therefore, accurate prediction of T-cell epitopes is crucial for vaccine development and clinical immunology. In current study, two types peptide features, i.e., amino acid properties and chemical molecular features were used for the T-cell epitopes peptide representation. Based on these features, random forest (RF) algorithm, a powerful machine learning algorithm, was used to classify T-cell epitopes and non-T-cell epitopes. The classification accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC) values for proposed method are 97.54%, 97.22%, 97.60%, 0.9193, and 0.9868, respectively. These results indicate that current method based on the combined features and RF is effective for T-cell epitopes prediction.  相似文献   

4.
The membrane‐bound tumor‐associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor‐associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune‐stimulating toll‐like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid‐phase synthesis of the MUC1 glycopeptides. The Pam3Cys lipopeptide, also synthesized on solid‐phase, was C‐terminally coupled to oligovalent lysine cores, which N‐terminally incorporate O‐propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide–lipopeptide conjugates are considered more immunogenic than their monovalent analogues.  相似文献   

5.
The structural characteristics of a mucin glycopeptide motif derived from the N-terminal fragment STTAV of the cell surface glycoprotein CD43 have been investigated by NMR. In this study, a series of molecules prepared by total synthesis were examined, consisting of the peptide itself, three glycopeptides having clustered sites of alpha-O-glycosylation on the serine and threonine side chains with the Tn, TF, and STF carbohydrate antigens, respectively, and one with the beta-O-linked TF antigen. Additionally, a glycopeptide having the sequence SSSAVAV, triglycosylated with the Le(y) epitope, was investigated. NMR data for the tri-STF-STTAV glycopeptide were used to solve the structure of this construct through restrained molecular dynamics calculations. The calculations revealed a defined conformation for the glycopeptide core rooted in the interaction of the peptide and the first N-acetylgalactosamine residue. The similarity of the NMR data for each of the alpha-O-linked glycopeptides demonstrates that this structure persists for each construct and that the mode of attachment of the first sugar and the peptide is paramount in establishing the organization of the core. The core provides a common framework on which a variety of glycans may be displayed. Remarkably, while there is a profound organizational effect on the peptide backbone with the alpha-linked glycans, attachment via a beta-linkage has little apparent consequence.  相似文献   

6.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, a 20-residue peptide (GSTAPPAHGVTSAPDTRPAP) representing the full length tandem repeat sequence of the human mucin MUC1 and its analogue glycosylated with the (2,6)-sialyl-T antigen on Thr11, were prepared and investigated by NMR and molecular modeling. The peptides contain both the GVTSAP sequence, which is an effective substrate for GalNAc transferases, and the PDTRP fragment, a known epitope recognized by several anti-MUC1 monoclonal antibodies. It has been shown that glycosylation of threonine in the GVTSAP sequence is a prerequisite for subsequent glycosylation of the serine at GVTSAP. Furthermore, carbohydrates serve as additional epitopes for MUC1 antibodies. Investigation of the solution structure of the sialyl-T glycoeicosapeptide in a H(2)O/D(2)O mixture (9:1) under physiological conditions (25 degrees C and pH 6.5) revealed that the attachment of the saccharide side-chain affects the conformational equilibrium of the peptide backbone near the glycosylated Thr11 residue. For the GVTSA region, an extended, rod-like secondary structure was found by restrained molecular dynamics simulation. The APDTR region formed a turn structure which is more flexibly organized. Taken together, the joined sequence GVTSAPDTR represents the largest structural model of MUC1 derived glycopeptides analyzed so far.  相似文献   

7.
In the development of vaccines for epithelial tumors, the key targets are MUC1 proteins, which have a variable number of tandem repeats (VNTR) bearing tumor-associated carbohydrate antigens (TACAs), such as Tn and STn. A major obstacle in vaccine development is the low immunogenicity of the short MUC1 peptide. To overcome this obstacle, we designed, synthesized, and evaluated several totally synthetic self-adjuvanting vaccine candidates with self-assembly domains. These vaccine candidates aggregated into fibrils and displayed multivalent B-cell epitopes under mild conditions. Glycosylation of Tn antigen on the Thr residue of PDTRP sequence in MUC1 VNTR led to effective immune response. These vaccines elicited a high level antibody response without any adjuvant and induced antibodies that recognized human breast tumor cells. These vaccines appeared to act through a T-cell independent pathway and were associated with the activation of cytotoxic T cells. These fully synthetic, molecularly defined vaccine candidates had several features that hold promise for anticancer therapy.  相似文献   

8.
Anti‐MUC1 monoclonal antibodies (mAbs) are powerful tools that can be used to recognize cancer‐related MUC1 molecules, the O‐glycosylation status of which is believed to affect binding affinity. We demonstrate the feasibility of using a rapid screening methodology to elucidate those effects. The approach involves i) “one‐bead‐one‐compound”‐based preparation of bilayer resins carrying glycopeptides on the shell and mass‐tag tripeptides coding O‐glycan patterns in the core, ii) on‐resin screening with an anti‐MUC1 mAb, iii) separating positive resins by utilizing secondary antibody conjugation with magnetic beads, and (iv) decoding the mass‐tag that is detached from the positive resins pool by using mass spectrometric analysis. We tested a small library consisting of 27 MUC1 glycopeptides with different O‐glycosylations against anti‐MUC1 mAb clone VU‐3C6. Qualitative mass‐tag analysis showed that increasing the number of glycans leads to an increase in the binding affinity. Six glycopeptides selected from the library were validated by using a microarray‐based assay. Our screening provides valuable information on O‐glycosylations of epitopes leading to high affinity with mAb.  相似文献   

9.
MHC class I peptide complexes (pMHC) are routinely used to enumerate T cell populations and are currently being evaluated as vaccines to tumors and specific pathogens. Herein, we describe the structures of three generations of single-chain pMHC progressively designed for the optimal presentation of covalently associated epitopes. Our ultimate design employs a versatile disulfide trap between an invariant MHC residue and a short C-terminal peptide extension. This general strategy is nondisruptive of native pMHC conformation and T cell receptor engagement. Indeed, cell-surface-expressed MHC complexes with disulfide-trapped epitopes are refractory to peptide exchange, suggesting they will make safe and effective vaccines. Furthermore, we find that disulfide-trap stabilized, recombinant pMHC reagents reliably detect polyclonal CD8 T cell populations as proficiently as conventional reagents and are thus well suited to monitor or modulate immune responses during pathogenesis.  相似文献   

10.
Li S  Yao X  Liu H  Li J  Fan B 《Analytica chimica acta》2007,584(1):37-42
T-lymphocyte (T-cell) is a very important component in human immune system. It possesses a receptor (TCR) that is specific for the foreign epitopes which are in a form of short peptides bound to the major histocompatibility complex (MHC). When T-cell receives the message about the peptides bound to MHC, it makes the immune system active and results in the disposal of the immunogen. The antigenic determinants recognized and bound by the T-cell receptor is known as T-cell epitope. The accurate prediction of T-cell epitopes is crucial for vaccine development and clinical immunology. For the first time we developed new models using least squares support vector machine (LSSVM) and amino acid properties for T-cell epitopes prediction. A dataset including 203 short peptides (167 non-epitopes and 36 epitopes) was used as the input dataset and it was randomly divided into a training set and a test set. The models based on LSSVM and amino acid properties were evaluated using leave-one-out cross-validation method and the predictive ability of the test set, and obtained the results of 0.9875 and 0.9734 under the ROC curves, respectively. This result is more satisfactory than that were reported before. Especially, the accuracy of true positive gets a marked enhancement.  相似文献   

11.
Mucin glycoproteins are essential components of the mucosal barrier, which protects the host from pathogens. Throughout evolution, bacteria have developed strategies to modulate and penetrate this barrier, and cause virulence by interacting with mucin O-glycans at the epithelial cell-surface. O-fucosylated glycan epitopes on mucins are key ligands of many bacterial lectins. Here, a chemoenzymatic synthesis strategy is described to prepare a library of fucosylated mucin core glycopeptides to enable studies of mucin-interacting and fucose-binding bacterial lectins. Glycan cores with biologically important Lewis and H-antigens were prepared decorating the peptide backbone at different sites and densities. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of glycan core and peptide backbone presentation of these antigens in binding interactions with the P. aeruginosa lectin LecB and the C. difficile toxin A.  相似文献   

12.
The structure of N-linked glycans is determined by a complex, anabolic, intracellular pathway but the exact role of individual glycans is not always clear. Characterization of carbohydrates attached to glycoproteins is essential to aid understanding of this complex area of biology. Specific mass spectral detection of glycopeptides from protein digests may be achieved by on-line HPLC-MS, with selected ion monitoring (SIM) for diagnostic product ions generated by cone voltage fragmentation, or by precursor ion scanning for terminal saccharide product ions, which can yield the same information more rapidly. When glycosylation is heterogeneous, however, these approaches can result in spectra that are complex and poorly resolved. We have developed methodology, based around precursor ion scanning for ions of high m/z, that allows site specific detection and structural characterization of glycans at high sensitivity and resolution. These methods have been developed using the standard glycoprotein, fetuin, and subsequently applied to the analysis of the N-linked glycans attached to the scrapie-associated prion protein, PrP(Sc). These glycans are highly heterogeneous and over 30 structures have been identified and characterized site specifically. Product ion spectra have been obtained on many glycopeptides confirming structure assignments. The glycans are highly fucosylated and carry Lewis X or sialyl Lewis X epitopes and the structures are in-line with previous results.  相似文献   

13.
A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list.The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.  相似文献   

14.
In silico identification of T-cell epitopes is emerging as a new methodology for the study of epitope-based vaccines against viruses and cancer. In order to improve accuracy of prediction, we designed a novel approach, using epitope prediction methods in combination with molecular docking techniques, to identify MHC class I restricted T-cell epitopes. Analysis of the HIV-1 p24 protein and influenza virus matrix protein revealed that the present approach is effective, yielding prediction accuracy of over 80% with respect to experimental data. Subsequently, we applied such a method for prediction of T-cell epitopes in SARS coronavirus (SARS-CoV) S, N and M proteins. Based on available experimental data, the prediction accuracy is up to 90% for S protein. We suggest the use of epitope prediction methods in combination with 3D structural modelling of peptide-MHC-TCR complex to identify MHC class I restricted T-cell epitopes for use in epitope based vaccines like HIV and human cancers, which should provide a valuable step forward for the design of better vaccines and may provide in depth understanding about activation of T-cell epitopes by MHC binding peptides.  相似文献   

15.
Although lectin selection is gaining increasing acceptance as a tool for targeting glycosylation in glycoproteomics, most of the work has been directed at N-glycosylation. The work reported here focuses on the use of lectins in the study of O-glycosylation. The problem with using lectins for studying O-glycosylation is that they are not sufficiently specific. This paper reports that through the use of serial lectin affinity chromatography (SLAC) it is possible to select predominantly O-glycosylated peptides from tryptic digests of human serum. Jacalin is relatively specific for O-glycosylation but has the problem that it also selects high mannose N-type glycans. This problem was addressed by using a concanavalin A affinity column to first remove high mannose, hybrid-type and biantennary complex-type N-type glycans before application of the Jacalin columns. When used in a serial format, concanavalin A and Jacalin together provide essentially O-glycosylated peptides. The glycoprotein parents of glycopeptides were identified by deglycosylating the selected O-glycopeptides by oxidative elimination. These peptides were then separated by RPC and further analyzed using ESI-MS/MS and MALDI-MS/MS. Using this approach all the O-glycosylated sites in a model protein (fetuin) and over thirty glycoprotein parents from human serum were identified. It is concluded that a serial combination of Con A and Jacalin can be of utility in the study of O-glycosylation in glycoproteomics.  相似文献   

16.
Virulence-related outer membrane proteins (Omps) are expressed in bacteria (Gram-negative) such as V. cholerae and are vital to bacterial invasion in to eukaryotic cell and survival within macrophages that could be best candidate for development of vaccine against V. cholerae. Applying in silico approaches, the 3-D model of the Omp was developed using Swiss model server and validated byProSA and Procheck web server. The continuous stretch of amino acid sequences 26 mer: RTRSNSGLLTWGDKQTITLEYGDPAL and 31 mer: FFAGGDNNLRGYGYKSISPQDASGALTGAKY having B-cell binding sites were selected from sequence alignment after B cell epitopes prediction by BCPred and AAP prediction modules of BCPreds. Further, the selected antigenic sequences (having B-cell epitopes) were analyzed for T-cell epitopes (MHC I and MHC II alleles binding sequence) by using ProPred 1 and ProPred respectively. The epitope (9 mer: YKSISPQDA) that binds to both the MHC classes (MHC I and MHC II) and covers maximum MHC alleles were identified. The identified epitopes can be useful in designing comprehensive peptide vaccine development against V. cholerae by inducing optimal immune response.  相似文献   

17.
The combination of solid phase peptide synthesis and endo-β-N-acetylglucosaminidase (ENGase) catalysed glycosylation is a powerful convergent synthetic method allowing access to glycopeptides bearing full-length N-glycan structures. Mannose-terminated N-glycan oligosaccharides, produced by either total or semi-synthesis, were converted into oxazoline donor substrates. A peptide from the human cytomegalovirus (CMV) tegument protein pp65 that incorporates a well-characterised T cell epitope, containing N-acetylglucosamine at specific Asn residues, was accessed by solid phase peptide synthesis, and used as an acceptor substrate. High-yielding enzymatic glycosylation afforded glycopeptides bearing defined homogeneous high-mannose N-glycan structures. These high-mannose containing glycopeptides were tested for enhanced targeting to human antigen presenting cells (APCs), putatively mediated via the mannose receptor, and for processing by the APCs for presentation to human CD8+ T cells specific for a 9-mer epitope within the peptide. Binding assays showed increased binding of glycopeptides to APCs compared to the non-glycosylated control. Glycopeptides bearing high-mannose N-glycan structures at a single site outside the T cell epitope were processed and presented by the APCs to allow activation of a T cell clone. However, the addition of a second glycan within the T cell epitope resulted in ablation of T cell activation. We conclude that chemo-enzymatic synthesis of mannosylated glycopeptides enhances uptake by human APCs while preserving the immunogenicity of peptide epitopes within the glycopeptides, provided those epitopes are not themselves glycosylated.  相似文献   

18.
The molecular characterization of unknown naturally presented major histocompatibility complex (MHC) class II glycopeptides carrying complex glycans has so far not been achieved, reflecting the different fragmentation characteristics of sugars and peptides in mass spectrometric analysis. Human leukocyte antigen (HLA)-DR-bound peptides were isolated by affinity purification, separated via high performance liquid chromatography and analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. We were able to identify two naturally processed MHC class II ligands, CD53(122-136) and CD53(121-136), carrying complex N-linked glycan side chains by a combination of in-source and collision-induced fragmentation on a quadrupole time-of-flight tandem mass spectrometer.  相似文献   

19.
Despite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly). In the present study, O-glycosylation was initiated specifically at Thr10 in naked MUC4 peptide and additional introduction of α-GalNAc proceeded preferentially but randomly at three other Thr residues to afford densely glycosylated MUC4 containing six α-GalNAc residues at Thr1, Ser2, Ser5, Thr6, Thr10, and Thr15. On the contrary, O-glycosylation of naked MUC5AC peptide occurred predominantly at consecutive Thr residues and led to MUC5AC with four α-GalNAc residues at Thr2, Thr3, Thr7, and Thr8. The solution structures determined by NMR spectroscopic studies elicited that the preferential introduction of α-GalNAc at Thr10 of MUC4 stabilizes specifically a β-like extended backbone structure at this area, whereas other synthetic models with a single α-GalNAc residue at Thr1, Thr6, or Thr15 did not exhibit any converged three-dimensional structure at the proximal peptide moiety. Such conformational impact on the underlying peptides was proved to be remarkable in the glycosylation at the consecutive Thr residues of MUC5AC.  相似文献   

20.
Self‐adjuvanting tricomponent vaccines were prepared and assessed for their self‐assembly and immunological activity in mouse models. The vaccines each consisted of a peptide or glycopeptide antigen that corresponds to a complete copy of the variable‐number tandem repeat (VNTR) of the tumor‐associated mucin 1 (MUC1) glycoprotein, the universal T‐cell helper peptide epitope PADRE, and the immunoadjuvant Pam3CysSer. The vaccines were shown to spontaneously self‐assemble in water to form isotropic particles varying in size from 17 to 25 nm and elicited robust humoral responses in murine models without the addition of an external adjuvant. The serum antibodies could recognize tumor‐associated MUC1 epitopes on the surface of MCF7 breast‐cancer cells and B16 melanoma cells, which overexpress this tumor‐associated glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号