首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

2.
Five copolymer samples containing different mole fractions of methyl methacrylate (MMA) and 2-ethylhexyl methacrylate (EHMA) were prepared by bulk polymerisation at 70°C using 0.2% benzoyl peroxide as an initiator. The copolymer composition was determined by1H NMR spectroscopy. Molecular weight of copolymers was determined by gel permeation chromatography and viscosity measurements. Thermogravimetric experiments were conducted to evaluate activation energy for the degradation of copolymers. Two to four reaction stages for the weight loss were observed in the copolymers. A decrease in thermal stability was observed by an increase in EHMA content.  相似文献   

3.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

4.
The thermal stabilities of poly(acryloyl chloride) homopolymer and copolymers of acryloyl chloride with methyl methacrylate covering the entire composition range were studied by thermogravimetric analysis. At each extreme of the composition range incorporation of comonomer units results in a copolymer which is less stable than the PMMA homopolymer. The activation energies of the decomposition of the copolymers were calculated using the Arrhenius equation and found to decrease from 32.2 to 12.5 kJ mol?1 as acryloyl chloride concentration of the copolymer increases, indicating that the copolymers of higher acryloyl chloride concentration should easier decompose than other copolymers. The reactivity ratios of the copolymer were calculated and found to ber 1(AC)=0.2±0.02 andr 2(MMA)=0.9±0.1.  相似文献   

5.
Copolymers with two distinguished reactive repeating units are of great interest, as such copolymers might open the possibility of obtaining selective and/or consequent copolymers with different chemical structures and properties. In the present work, copolymers based on two active esters (pentafluorophenyl methacrylate and p-nitrophenyl methacrylate) with varied compositions were synthesized by Cu(0)-mediated reversible deactivation radical polymerization. This polymerization technique allows the preparation of copolymers with high to quantitative conversion of both comonomers, with moderate control over dispersity (Đ = 1.3–1.7). Additionally, by in-depth study on the composition of each copolymer by various techniques including elemental analysis, NMR, FT-IR, and XPS, it was possible to confirm the coherence between expected and obtained composition. Thermal analyses by DSC and TGA were implemented to investigate the relation between copolymers’ composition and their thermal properties. Finally, an evaluation of the difference in reactivity of the two monomer moieties was confirmed by post-modification of copolymers with a primary amine and a primary alcohol as the model.  相似文献   

6.
Glycidyl methacrylate was copolymerized with tert-butyl acrylate in bulk at 60°C using benzoyl peroxide as free radical initiator. The copolymer composition was determined by chemical analysis as well as from 13C-NMR data. The monomer reactivity ratios were calculated by using the YBR method. The number average sequence length of the copolymers was determined from 13C-NMR data and compared with those obtained from reactivity ratios. The intrinsic viscosity of the copolymers was determined in DMF, and thermal stability as well as mechanism of thermal degradation of the copolymers were evaluated.  相似文献   

7.
Homopolymer bearing cyclic carbonate (CC) group, ABA type triblock copolymers, and (AC)B(AC) type terpolymers with statistical arrangement of A and C monomers bearing side chain CC groups are reported here. Difunctional poly(ethylene glycol) macroinitiators (PEGMIs) were prepared from PEG of three different molecular weights. PEGMIs were subsequently used for the preparation of polymers bearing CC pendant groups from cyclic carbonate methacrylate (CCMA) under atom transfer radical polymerization to yield polymers with low polydispersity index. Homopolymer and ABA type triblock copolymers were obtained by polymerizing CCMA monomer and (AC)B(AC) type statistical terpolymers were obtained when methyl methacrylate was included as a comonomer. No polymer was obtained when styrene was used as comonomer. The cyclic carbonate groups were subjected to ring‐opening reaction with monoamine to yield side chain hydroxyurethane polymers with increased solubility and diamines to yield crosslinked insoluble materials. Changes in wettability characteristics were studied by following the water contact angle of the polymers before and after ring‐opening reaction involving the cyclic carbonate pendant group. The polymers which composed of electrolyte in the form of PEG and coordinating species in the form of pendant cyclic carbonate groups showed conductivity in the range of 2–5 × 10?6 Scm?1 at 23 °C after doping with lithium bis(trifluoromethane)sulfonimide as characterized by impedance spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1622–1632, 2010  相似文献   

8.
A novel N‐hydroxy succinimide‐based carbonate monomer that allows direct synthesis of polymers incorporating a reactive carbonate group in the side chain was synthesized. This new monomer was copolymerized with methyl methacrylate and poly(ethylene glycol) methylether methacrylate using free‐radical polymerization to obtain organo‐ and water‐soluble reactive copolymers. Copolymerization of the activated carbonate monomer with an azide‐containing monomer and N‐hydroxy succinimide‐containing activated ester monomer provided orthogonally functionalizable copolymers. The pendant reactive carbonate groups of the copolymers were functionalized with amines to obtain carbamates. Polymers capable of orthogonal functionalization could be selectively functionalized as desired using subsequent 1,3‐dipolar cycloaddition or amidation reactions. The novel monomer and the copolymers were characterized by 1H‐NMR, 13C‐NMR, and infrared spectroscopy. The efficient stepwise orthogonal functionalization of the copolymers were examined via 1H‐NMR spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
A series of fluorine-containing acrylate copolymers were prepared by 60Co γ-ray radiation co-polymerization in a mixed acrylate system, including butyl acrylate, acrylic acid, acrylonitrile, N-hydroxymethyl acrylamide and perfluoroalkylethyl methacrylate (FMA). The yield of the copolymers reached 96% when they were radiated for 34 h with the radiation dose of 1 kGy/h. Moreover, the surface structure and properties of the copolymers were determined by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle (CA) analysis. And the glass-transition temperature was measured by dynamic mechanical thermal analysis (DMTA). It was found that the fluoropolymer was of large water static contact angle and fluorine was enriched at the polymer-air interface. The relationship between the copolymer composition, annealed temperature and static contact angle was also discussed in detail. Furthermore, when the FMA content reached 3%, the cotton treated with our products exhibited better oil repellency.  相似文献   

10.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

11.
2-Methacryloxyethyl phenyl phosphate/methyl methacrylate (MEPP/MMA) copolymers were synthesized by the bulk polymerization of MMA in the presence of various amounts of MEPP. MEPP was prepared by the esterification of phenyl dichlorophosphate with 2-hydroxyethyl methacrylate, followed by hydrolysis. Structural and compositional details of MEPP were obtained by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, 31P nuclear magnetic resonance, and mass spectrometer, as well as by elemental analysis. The monomer reactivity ratios of MEPP/MMA system were calculated by the methods of Fineman-Ross, Kelen-Tüdös, and Joshi-Joshi. The thermal degradation temperature of the MEPP/MMA copolymers was considerably enhanced by only a slight decrease in Tg, as determined by differential scanning calorimetry and thermogravimetric analysis experiments. The fire-retardant properties of MEPP/MMA copolymers were also studied by LOI and UL-94 tests, indicating that an MEPP/MMA copolymer with only 2.17 wt% phosphorus can effectively inhibit burning.  相似文献   

12.
Multi-arm star amphiphilic hyperbranched copolymers with poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) shell and hyperbranched poly(3-ethyl-3-(hydroxymethyl)oxetane) (HBPO) core were synthesized by reversible addition?Cfragmentation chain transfer method. The hyperbranched copolymers were further modified by succinic anhydride (SUC) to obtain the novel pH- and thermosensitive hyperbranched copolymer HBPO-star-PDMAEMAs-SUC. The composition and morphology of synthesized copolymers were investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy. These copolymers exhibited phase transitions in response to pH and temperature. The pH-dependent release properties of the drug-loaded micelles were also investigated using indomethacin (IND) as a model drug. The IND-loaded micelles displayed a rapid drug release at an alkaline pH.  相似文献   

13.
Well-defined four-arm star poly(?-caprolactone)-block-poly(cyclic carbonate methacrylate) (PCL-b-PCCMA) copolymers were synthesized by combining ring-opening polymerization (ROP) with atom transfer radical polymerization (ATRP). First, a four-arm poly(?-caprolactone) (PCL) macroinitiator [(PCL-Br)4] was prepared by the ROP of ?-CL catalyzed by stannous octoate at 110°C in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2-bromoisobutyryl bromide. The sequential ATRP of CCMA monomer was carried out by using the (PCL-Br)4 tetrafunctional macroinitiator (MI) and in the presence of CuBr/2, 2′-bipyridyl system in DMF at 80°C with [(MI)]:[CuBr]:[bipyridyl] = 1:1:3 to yield block polymers with controlled molecular weights (Mn (NMR) = 10700 to 27300 g/mol) by varying block lengths and with moderately narrow polydispersities (Mw/Mn = 1.2–1.4). Block copolymers with different PCL: PCCMA copolymer composition such as 50:50, 70:30 and 74:26 were prepared with good yields (48-74%). All these block copolymers were well characterized by NMR, FTIR and GPC and tested their thermal properties by DSC and TGA.  相似文献   

14.
Poly(1-vinylimidazole-co-methyl methacrylate) copolymers (PVM) were obtained from copolymerization of 1-vinylimidazole and methyl methacrylate with 2,2-azobisisobutyronitrile as an initiator. The formation of random copolymers was substantiated by the glass transition temperature (Tg) and the proton spin-lattice relaxation time in the rotating frame (TH). Cu(II)-PVM complexes were prepared by mixing tetrahydrofuran solution of PVM and copper sulfate solution. The formation of coordination bond between PVM and Cu2+ ions was studied using differential scanning calorimetry, infrared and 13C solid-stated nuclear magnetic resonance spectroscopy. A single composition dependent Tg was obtained for the PVM copolymers, and that increased with increasing VI content. The Tg value of the Cu(II)-PVM complex was much higher than that of the PVM copolymer with the same composition. The TH of the VI units and MMA units in the copolymers and complexes had one value, and that in the complexes was much lower than that in the copolymers. The dramatic decrease in TH for the Cu(II)-PVM complexes was due to Cu(II) complexation and electron-nuclear dipolar interactions.  相似文献   

15.
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, such as methyl acrylate (MA), acrylonitrile (AN), methyl methacrylate (MMA), and styrene (St), resulting in copolymers with comparable incorporation ratios of bio-based cyclic conjugated monomer units ranging from 40 to 60 mol% at a 1:1 feed ratio. The monomer reactivity ratios when using AN as a comonomer were close to 0, whereas those with St were approximately 0.5 to 1, indicating that these diene monomers can be considered electron-rich monomers. Reversible addition fragmentation chain-transfer (RAFT) copolymerizations with MA, AN, MMA, and St were all successful when using S-cumyl-S’-butyl trithiocarbonate (CBTC) as the RAFT agent resulting in copolymers with controlled molecular weights. The copolymers obtained with AN, MMA, or St showed glass transition temperatures (Tg) similar to those of common vinyl polymers (Tg ~ 100 °C), indicating that biobased cyclic structures were successfully incorporated into commodity polymers without losing good thermal properties.  相似文献   

16.
Abstract

New liquid crystalline (LC) homo- and copolymethacrylates having a carbonate linkage between a benzylideneaniline mesogen and ethylene chain in the side chain were prepared by free radical polymerization of methacrylate derivatives comprising 4-cyano- and/or 4-methoxybenzylide-neaniline units using AIBN as an initiator. The structures of the polymers were characterized by FTIR, 1HNMR, and elemental analyses. The LC properties were evaluated by differential scanning calorimetry (DSC), polarizing microscopic observation of textures and X-ray diffraction. These measurements showed that all the homo- and copolymers form nematic phases. The isotropization temperatures on composition exhibited a negative deviation from a linear relationship between them predicted by the Schroeder-Van Laar equation. This phenomenon might be caused mainly by an unusual geometry arising from a smaller bond angle in the carbonate linkage.  相似文献   

17.
In the present work, the effect of butyl lactate methacrylate (BLM) content on the properties of acrylic acid (AA) copolymers was investigated. The BLM monomer was synthesized by reacting butyl lactate with methacrylic acid through azeotropic distillation method, which was confirmed by Mass spectrometric technique. Copolymers were synthesized by free-radical solution polymerization technique to obtain poly(BLM-co-AA). BLM monomer and copolymers were characterized by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR) and proton decoupled 13C-NMR spectroscopic techniques. The Finemann-Ross method was used to determine the reactivity ratio of AA and BLM and the values were found to be 0.79 and 0.39, respectively. The wide angle X-ray scattering (WAXS) studies exhibited that the increase in BLM content in copolymers, shifted the amorphous halo from 21.34° to 15.39° and also increased the average molecular interchain spacing (〈R〉) from 5.20 to 7.18 Å, which was calculated from 2θ values of amorphous halo of copolymers. Moisture absorption of polymers followed Fickian absorption. Depending upon the copolymer composition, relative humidity and time, the moisture absorption of copolymers can be tuned to a wide range from 11 to 35% (wt/wt). Glass transition temperature of copolymers decreased from 106 to 72.1°C with increase in BLM content. Copolymers were thermally stable up to 150°C and thereafter exhibited three-step thermal degradation in nitrogen atmosphere. Thermal stability of copolymers can be explained on the basis of 〈R〉 value.  相似文献   

18.
Two types of biodegradable poly(ε-caprolactone (CLo))-co-poly(ε-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. For the first type of materials, the respective cyclic comonomers were added simultaneously in the reaction medium leading to the formation of copolymers having a random distribution of co-units within the polyesteramide sequence, as evidenced by 1H and 13C NMR. For the second type of copolymers, the cyclic comonomers were added sequentially in the reaction medium yielding diblock polyesteramides, again evidenced by NMR. The thermal and thermo-mechanical properties of the copolymers were investigated by DSC and DMA and correlated with the copolymer topology and composition. The copolymers were characterized by a storage modulus and α transition temperature intermediate to the modulus and Tg of the corresponding homopolymers. The chemical composition and molecular weight of the copolymers proved to have only a limited effect on the thermo-mechanical properties of the materials. The hydrolytic degradation of random copolymers was studied in a phosphate buffer at 60 °C and discussed in terms of chemical composition and molecular weight of the copolymers.  相似文献   

19.
A new methacrylate monomer 2-(4-nitrophenyl)-2-oxoethyl-2-methacrylate (NFM) was synthesized and its radical copolymerization with glycidyl methacrylate (GMA) was studied in 1,4-dioxane solution at 65°C using 2,2′-azobisisobutyronitrile as an initiator. The synthesized monomer and copolymers were characterized by FTIR, 1H and 13C-NMR spectroscopy. The analysis of reactivity ratios revealed that NFM is less reactive than GMA, and copolymers formed are statistically in nature. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increasing in the mole fraction of NFM in the copolymers. Glass transition temperatures of the copolymers decreased with an increasing of NFM molar fraction in copolymers. In addition, according to the results obtained from the contact angle and zeta potential measurements the hydrophobic character of the polymer decreases (it means surface free energy increases) and its zeta potential becomes more negative with increase of NFM ratio in the copolymer. Polymers with carbonyl functional groups have been particularly interesting because of their use as photoresists.  相似文献   

20.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号