首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to investigate the influence of clay nanoparticles on the biodegradability of wheat gluten-based materials through a better understanding of multi-scale relationships between biodegradability, water transfer properties and structure of wheat gluten/clay materials. Wheat gluten/clay (nano)composites materials were prepared via bi-vis extrusion by using an unmodified sodium montmorillonite (MMT) and an organically modified MMT. Respirometric experiments showed that the rate of biodegradation of wheat gluten-based materials could be slowed down by adding unmodified MMT (HPS) without affecting the final biodegradation level whereas the presence of an organically modified MMT (C30B) did not significantly influence the biodegradation pattern. Based on the evaluation of the water sensitivity and a multi-scale characterization of material structure, three hypotheses have been proposed to account for the underlying mechanisms. The molecular/macromolecular affinity between the clay layers and the wheat gluten matrix, i.e. the ability of both components to establish interactions appeared as the key parameter governing the nanostructure, the water sensitivity and, as a result, the overall biodegradation process.  相似文献   

2.
Phosphosilicate glasses are of great interest in important fields, such as optical active systems, energy generating systems, humidity sensors, and as materials for biomedical applications. Many studies were accomplished to establish the influence of different reaction parameters on the evolution and final structure of sol–gel prepared phosphosilicate gels. In the present work, we studied the thermal behavior of the silicophosphate gels obtained starting with different phosphorous precursors, the influence of these precursors on the composition and structure of the resultant gels, and their evolution with thermal treatment. By Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and thermodifferential analysis (DTA/TG), and Differential Scanning calorimetry coupled with Mass Spectrometry (DSC-MS), it was established that the type of the precursors essentially influences the composition and structure and consequently the thermal behavior of the obtained gels. In the case of triethylphosphate precursor, all used methods of investigation have shown that the ester is trapped in the silica matrix and it is eliminated during the thermal treatment. Triethylphosphite partially hydrolizes and reacts with the silica network during post-preparation thermal treatment. Only in the case of H3PO4, an interaction with TEOS takes place and leads to Si–O–P bond formation. By thermal treatment, the gels with different composition and structure lead to materials with different properties.  相似文献   

3.
We report for the first time that Pd nanocrystals can absorb H via a “single-phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7- and 12-nm in size are exposed to H atoms, the H-saturated twin boundaries can divide each particle into 20 smaller single-crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single-phase pathway and one can readily obtain PdHx with anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single-phase pathway is only observed for particles of 7 nm in size. We also establish that the H-absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H-absorption behaviors, the PdHx (x=0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.  相似文献   

4.
Pt, Pd, Pt-Ag and Pd-Ag bimetallic nanoparticles were synthesized in ethylene glycol and glycerol using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It has been observed that PVP is capable of complexing and stabilizing nanoparticles. Mixed clusters were formed by simultaneous reduction of the metal ions. The clusters were characterized using UV-Vis spectra, XRD and dynamic light scattering. To understand the mechanism of formation of mixed nanoparticles, several experimental parameters such asin situ irradiation of mixed metal salts and mixing of individual sols were attempted.  相似文献   

5.
The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium–hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero‐interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell‐type bimetallic nanoparticles. It is proposed that the potential formed in the hetero‐interface stabilizes hydrogen atoms rather than interstitials in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.  相似文献   

6.
The complexes PdII(qcq)(OAc) and PtII(qcq)Cl have been synthesized using environmentally benign synthesized ligands and characterized by elemental analyses: Fourier transform infrared spectroscopy, UV–visible spectroscopy, 1H NMR spectroscopy, and X-ray diffraction. The catalytic activity of the complex was assessed, in different media, for the Mizoroki–Heck coupling reaction for typical aryl halides and terminal olefins under aerobic conditions. Since the base and the solvent were found to influence the efficiency of the reaction, reaction conditions, temperature, time, and the amount of K3PO4 and a mixture of H2O/PEG, were optimized. We found, for the Mizoroki–Heck reaction coupling less reactive aryl chloride derivatives with olefins, promising activity for palladium catalysts. The electrochemical behavior of Hqcq and the Pd(II) complex was investigated by cyclic voltammetry and irreversible PdII/I reductions were observed. Hqcq and the Pd(II) and Pt(II) complexes were also screened for their in vitro antibacterial activity. They showed promising antibacterial activity comparable to that of the antibiotic penicillin.  相似文献   

7.
Monomodal colloidal suspensions containing EDI-type zeolite nanocrystals with sizes below 20 nm were prepared via a palladium and platinum amine templating approach. The role of the metal complexes in zeolite crystallization is elucidated using spectroscopic and microscopic characterization techniques in a series of samples containing pure Pd, Pt, and Cu amine complexes as well as mixtures of two compounds. The crystallization process of colloidal zeolites in precursor suspensions containing both [Pd(NH3)4]2+ and [Pt(NH3)4]2+ proceeds faster than in [Cu(NH3)4]2+ systems. The Pd and Pt complexes lead to a faster and enhanced nucleation rate in the precursor aluminosilicate suspensions in comparison to the copper amine complex. The latter explains both the smaller particle size and the higher monodispersity in the samples templated by Pd and Pt as compared to pure Cu-containing samples. Precursor systems containing mixed metal templates were used to control further the particle size and degree of metal loadings in the colloidal molecular sieves.  相似文献   

8.
This Communication describes a facile route to the preparation of ultrathin gold nanowires using linear chains formed from [(oleylamine)AuCl] complex via aurophilic interaction. The linear chains, with AuI...AuI bonds as the backbone and surrounded by oleylamines, can group together to form bundles of polymeric strands. When the AuI was reduced to Au0 by reacting with Ag nanoparticles in hexane, the polymeric strands functioned as both the source of Au and the template to mediate the nucleation and growth of Au nanowires. Using this method, we were able to produce Au nanowires with an average diameter of approximately 1.8 nm and an aspect ratio of >1000 in high yields (approximately 70%).  相似文献   

9.
We construct shells with tunable morphology and mechanical response with colloidal particles that self-assemble at the interface of emulsion droplets. Particles self-assemble to minimize the total interfacial energy, spontaneously forming a particle layer that encapsulates the droplets. We stabilize these layers to form solid shells at the droplet interface by aggregating the particles, connecting the particles with adsorbed polymer, or fusing the particles. These techniques reproducibly yield shells with controllable properties such as elastic moduli and breaking forces. To enable diffusive exchange through the particle shells, we transfer them into solvents that are miscible with the encapsulant. We characterize the mechanical properties of the shells by measuring the response to deformation by calibrated microcantilevers.  相似文献   

10.
Diiminodipyrromethane complexes of Ni, Pd, and Pt are able to activate O2, resulting in a metal-dependent autoxidation of the ligand.  相似文献   

11.
This article presents a route to a novel polyester having sequentially ordered two orthogonal reactive groups. The polyester was given by the imidazole‐initiated alternating copolymerization of allyl glycidyl ether (AGE) and a bislactone 1 . This copolymerization system is characterized by the following three reaction behaviors: (1) the selective participation of only one of the two lactone moieties of 1 to the copolymerization to give a linear polyester, and the consequent introduction of the second lactone into the side chain of the polyester, (2) the participation of the epoxy moiety in AGE to the copolymerization, and the consequent introduction of the carbon–carbon double bond into the side chain of the polyester, and (3) arrangement of the sequentially ordered two orthogonal reactive groups according to the alternating manner. The introduction of the two reactive groups to the side chain of the alternating copolymer allowed two routes of sequential chemoselective reactions: (A) The ring‐opening reaction of the lactone moiety with n‐propylamine and the following Pt‐catalyzed hydrosilylation of the carbon–carbon double bond with dimethylphenylsilane and (B) the sequential reactions of the reverse order. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

12.
Carbon nanotubes (CNTs), γ-alumina (γ-Al2O3) and silica (SiO2) supported Pt and Pd catalysts were produced by laser vaporization deposition of respective bulk metals. The catalysts were characterized by inductive coupled plasma emission spectrometer (ICP), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The catalytic properties of the catalysts were investigated in the liquid phase hydrogenation of o-chloronitrobenzene (o-CNB) to o-chloroaniline (o-CAN) under 333 K and 1.0 MPa hydrogen pressure. The results show that the catalytic properties are greatly affected by the supports. Pt/CNTs catalyst exhibits the best catalytic performance among the Pt-based catalysts, producing o-CAN with 99.6% selectivity at complete conversion. Pd/CNTs catalyst exhibits the best catalytic performance among the Pd-based catalysts, giving o-CAN with 95.2% selectivity at complete conversion. For Pt-based catalysts, geometric effect and the textures and properties of the supports play important roles on catalytic properties. On the other hand, geometric effect, electronic effect and the textures and properties of the supports simultaneously influence the catalytic properties of the Pd-based catalysts. In addition, hydrogenolysis of the C–Cl bond can be well inhibited over all catalysts prepared by laser vaporization deposition.  相似文献   

13.
14.
负载铂-钯催化剂上甲烷对一氧化氮的选择性还原朱波,罗孟飞,周仁贤,袁贤鑫(杭州大学催化研究所杭州310028)关键词一氧化氮,选择性还原,甲烷,负载铂/钯催化剂NO_x(尤其是NO)是极难脱除的大气主要污染物之一,研究脱除方法是目前国际上环保化学的一...  相似文献   

15.
形貌控制对调控贵金属纳米晶的催化和光学性能至关重要.近年来,在发展铂、钯纳米晶的形貌控制的方法过程中,一氧化碳(CO)不仅作为合成铂、钯纳米晶的优良还原剂,还可通过在特定晶面的选择性吸附辅助铂、钯纳米晶的形貌控制.CO辅助铂、钯纳米晶形貌控制的方法正逐步展现出独特的优越性,甚至帮助我们制备了一些目前其他方法所无法制备的纳米晶.该综述文章首先从表面科学的角度分析讨论CO分子在铂、钯单晶面上的不同吸附行为,然后总结分析了CO调控铂、钯纳米晶形貌的几个典型例子(超薄钯纳米片、介晶钯纳米花、钯四角叉/四面体以及铂纳米立方体、铂钴削角八面体),讨论了CO在控制铂、钯纳米晶的形貌控制作用及其化学本质,最后提出CO在辅助贵金属纳米晶的形貌控制中的挑战和展望.  相似文献   

16.
Knowledge of exactly how metal complexes react with molecular oxygen is still limited and this has hampered efforts to develop catalysts for oxidation reactions using O2 as the oxidant and/or oxygen‐atom source. A better understanding of the reactions of different types of metal complexes with O2 will be of great utility in rational catalyst development. Reactions between molecular oxygen and Pd0–II and Pt0–IV complexes are reviewed here.  相似文献   

17.
A Pd-Mo electrocatalytic system was obtained by forming palladium particles on the Mo surface that contacted a PdCl2 solution under open-circuit conditions. The state of palladium on the electrode surface depended on the contact displacement time. Palladium particles 5–10 nm in size formed on the surface of the Pd(Mo) electrode after palladium deposition for 1 min. The specific rates of formic acid oxidation on the Pd(Mo) electrode were smaller than those on the Pd/Pt electrode. On the Pd(Mo) electrode, anode currents of methanol oxidation were recorded at a potential of 0.4 V. The difference in the effects of the Mo substrate on the activity of Pd particles in the electrooxidations of HCOOH and CH3OH was explained by the difference in the mechanisms of these reactions.  相似文献   

18.
A -Al2O3 supported Pd–Pt bimetallic catalyst prepared by electrochemical metal adsorption has been tested in n-hexane dehydrocyclization. The Pd–Pt/Al2O3 catalyst, after calcination in oxygen followed by hydrogen treatment, showed higher activities and better selectivities for benzene and iso-hexane formation. The Pd–Pt/Al2O3 catalyst appeared to be less sensitive to the changes in the temperature of hydrogen treatment than the base Pt/Al2O3 catalyst.
Re–Pt, -Al2O3, . -. , Re–Pt/Al2O3, , , , . , Pt/Al2O3.
  相似文献   

19.
Gold alloys have been reported to be active in very low temperature oxidation of CO. The reasons for the better performance of AuNi with respect to Ni(111) surfaces were reported recently by indicating an active role of gold. Our results show that for this alloy, the CO oxidation molecular channel is responsible for the low temperature performance but the remaining oxygen on the surface is tightly bound and the process is not catalytic at low to room temperatures. The contribution from the associative path is also improved for the rest of the series: AuPd and AuPt. Only in the latter case, an important reduction of the light-off temperature of the catalytic path is observed.  相似文献   

20.
采用密度泛函理论研究Au-Pd和Au-Pt 纳米团簇催化解离N2O. 首先根据计算得到Au19Pd和Au19Pt 团簇的最优构型(杂原子均位于团簇的表面). 以Au19Pd催化解离N2O为例研究催化解离的反应机理. 对此主要考虑两个反应机理, 分别是Eley-Rideal (ER)和Langmuir-Hinshelwood (LH). 第一个机理中N2O解离的能垒是1.118 eV, 并且放热0.371 eV. N2分子脱附后, 表面剩余的氧原子沿着ER路径消除需要克服的能垒是1.920eV, 这比反应沿着LH路径的能垒高0.251 eV. 此外根据LH机理, 氧原子在表面的吸附能是-3.203 eV, 而氧原子在表面转移所需的能垒是0.113 eV, 这表明氧原子十分容易在团簇表面转移, 从而促进氧气分子的生成. 因此, LH为最优反应路径. 为了比较Au19Pd和Au19Pt 对N2O解离的活性, 根据最优的反应路径来研究Au19Pt 催化解离N2O, 得到作为铂族元素的铂和钯对N2O的解离有催化活性, 尤其是钯. 同时, 将团簇与文献中的Au-Pd合金相比较, 得到这两种团簇对N2O 解离有较高的活性, 尤其是Au19Pd团簇. 再者, O2的脱附不再是影响反应的主要原因, 这可以进一步提高团簇解离N2O的活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号