首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new mechanical model for simulating both the ship oscillations and the induced twisting of the hull in the case of longitudinal seas is presented. Particular attention is given to the onset of parametric rolling, which may result from non-linearly coupled heave-pitch-roll motions. It is shown that in these sea conditions the phenomenon of twisting is likely to occur under a mechanism similar to that of parametric rolling.  相似文献   

2.
The Bogolyubov-Mitropolsky method is used to find approximate periodic solutions to the system of nonlinear equations that describes the large-amplitude vibrations of cylindrical shells interacting with a fluid flow. Three quantitatively different cases are studied: (i) the shell is subject to hydrodynamic pressure and external periodical loading, (ii) the shell executes parametric vibrations due to the pulsation of the fluid velocity, and (iii) the shell experiences both forced and parametric vibrations. For each of these cases, the first-order amplitude-frequency characteristic is derived and stability criteria for stationary vibrations are established__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 75–84, April 2005.  相似文献   

3.
We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.  相似文献   

4.
Free vibrations of a heavy homogeneous cylinder rolling in a cylindrical cavity whose directing curve is a brachistochrone are considered. The equation of motion of the cylinder is derived and the circular frequency of free vibrations of the cylinder center of mass is determined. An analogy between the cycloidal pendulum with a rolling cylinder and the classical cycloidal pendulum in the form of a material point is obtained.  相似文献   

5.
The non-linear equations and boundary conditions of non-planar (two bending and one torsional) vibrations of inextensional isotropic geometrically imperfect beams (i.e. slightly curved and twisted beams) are derived using the extended Hamilton's principle. The assumptions of Euler-Bernoulli beam theory are used. The order of magnitude of the natural geometric imperfection is assumed to be the same as the first order of vibrations amplitude. Although the natural imperfection is small, in contrast to the case of straight beams (i.e. geometrically perfect beams), this study shows that the vibration equations are linearly coupled and have linear and quadratic terms in addition to cubic terms. Also, in the case of near-square or near-circular beams, coupling terms between lateral and torsional vibrations exist. Furthermore, a problem of parametric excitation in the case of perfect beams changes to a problem of mixed parametric and external excitation in the case of imperfect beams. The validity of the model is investigated using the existing experimental data.  相似文献   

6.
The effect of initial imperfections on the parametric vibrations of cylindrical shells is analyzed. The shell has moderate amplitudes of vibrations; therefore, geometrically nonlinear theory is used. The shell vibrations are described by the Donnel equations. The interaction of three pairs of conjugate modes is considered in the analysis. Therefore, the shell vibrations are described by six-degrees-of-freedoms nonlinear dynamical system. The multiple scales method and the continuation technique are used to analyze the system dynamics. The role of initial imperfections in nonlinear dynamics of shell is discussed using frequency responses.  相似文献   

7.
The paper presents the results of experimental studies of vibrations of an elastic hose which are induced by a pulsating fluid flow. It was found that there is a possibility of parametric resonances: principal and combination associated with certain modes of vibrations. The influence of frequency and the amplitude of pulsation, average flow velocity, pressure inside pipe, the length of the hose, and the temperature on the ranges of parametric vibrations were analysed. The character of vibrations in resonance ranges was determined by showing time histories and the results of spectral analyses. A flexible hose applied in high-pressure hydraulic systems was used as an object of research. The values of basic parameters which describe the hose׳s mechanical properties were identified experimentally. The results of the experiments were compared with the results of numerical simulations conducted on the basis of the methodology proposed in Part I of this paper.  相似文献   

8.
A model of sliding and spinning friction forces for a ball in the form of finite relations obtained by integrating the tangential stresses over the contact area whose parameters are determined by Hertz’s theory for the “ball-rough horizontal surface” tribological conjunction pair is supplemented with a model of rolling friction torques. The combined model is peculiar in that the presliding displacement effect in rolling and spinning friction torques is taken into account. It is shown that the ball motions in the presliding displacement zone are of quasilinear character and, under shock perturbations, have the form of damping vibrations in the three orientation angles. The numerical parameters of the rolling and spinning friction model are experimentally determined for the presliding displacement zones, while the sliding friction parameters and partly the spinning friction parameters are calculated. Mathematical modeling permits one to discover new properties of the ball, namely, its deceleration in rolling, the onset of damping vibrations at the beginning and end of motion, and the transient process parameters.  相似文献   

9.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

10.
The paper addresses an active control of the resonant vibrations of composite beams performed by a parametric stiffness modulation. A sandwich beam composition with the continuous core is considered. The stiffness modulation is introduced by some fairly small changes in an orientation of elements of the microstructure of a core ply. The controlled vibrations are those of the dominantly flexural type excited by a transverse force acting at a low resonant frequency, whereas the stiffness modulation is performed at a comparatively high frequency identified by the resonance of a mode of the dominantly shear type. This difference in time scales of the controlled vibrations and the input signal facilitates a use of the method of direct partition of motion that predicts an existence of the modal interaction between the low-frequency and the high-frequency motions due to so-called vibrational forces. It is shown that such a parametric control can provide a significant favourable shift of the first eigenfrequency of a controlled beam (the one subjected to the stiffness modulation) from its nominal value for an uncontrolled beam. Heavy fluid loading conditions are accounted for as well as material losses in a structure. Then instead of analysis of eigenfrequencies, a problem of forced vibrations is posed and the forced frequency–amplitude response is analysed. It is demonstrated that although heavy fluid loading reduces resonant frequencies of forced vibrations, the suggested mechanism of control remains valid in these cases.  相似文献   

11.
The paper discusses the results of systematic experimental studies of vibrations and dynamic instability of thin shells of revolution made of laminated composite materials (glassfiber-reinforced plastics). The basic patterns in the dynamic deformation of shells during natural, forced, and parametric vibrations are considered. The damping parameters of natural vibrations are analyzed. The wave deformation modes of shells subject to periodic excitation are studied. The effect of long-term vibratory loading (torsion) on the dynamic characteristics of three-layer glassfiber-reinforced plastic shells is examined  相似文献   

12.
The influence of the curving and twisting of an elongated blade on its vibrations during complex rotation is studied. It is shown that these geometrical factors may cause additional resonant vibrations__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 126–132, April 2005.  相似文献   

13.
We investigate the effect of a fast vertical parametric excitation on self-excited vibrations in a delayed van der Pol oscillator. We use the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic in the vicinity of the trivial equilibrium. Then, we apply the multiple scales method on this slow dynamic to derive a second-order slow flow system describing the modulation of slow dynamic. In particular we analyze the slow flow to obtain the effect of a fast excitation on the regions in parameter space where self-excited vibrations can be eliminated. We have shown that in the case where the time delay and the feedback gains are imposed, fast vertical parametric excitation can be an alternative to suppress undesirable self-excited vibrations in a delayed van der Pol oscillator.  相似文献   

14.
This paper addresses the random vibrations of the oscillators with correlated external and parametric excitations being Gaussian white noises. The exponential polynomial closure method is used in the analysis, with which the probability density of the system responses is obtained. Two oscillators are analyzed. One is about the linear oscillator subjected to correlated external and parametric excitations. Another is about the oscillator with cubic nonlinearity and subjected to correlated external and parametric excitations. Numerical studies show that exponential polynomial closure method provides computationally efficient and relatively accurate estimates of the stationary probabilistic solutions, particularly in the tail regions of the probability density functions. Numerical results further show that correlated external and parametric excitations can cause unsymmetrical probabilistic solutions and nonzero means which are different from those when the external and parametric excitations are independent.  相似文献   

15.
The present work deals with the influence of initial geometric imperfections on the dynamic behavior of simply supported rectangular plates subjected to the action of periodic in-plane forces. The nonlinear large-deflection plate theory used in this analysis corresponds to the dynamic analog of von Karman's theory. The temporal response is analyzed by the first-order generalized asymptotic method. The solution for the temporal equations of motion takes into account the possibility of existence of simultaneous forced and parametric vibrations. The results indicate that the presence of initial imperfections may significantly raise the resonance frequencies, cause the plate to exhibit a soft spring behavior and improve slightly the stability of the plate by reducing the area of its instability zones. Furthermore, the presence of initial imperfections induces forced vibrations which interact with parametric vibrations in order to generate a competitive hesitation phenomenon in the transition zone.  相似文献   

16.
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.  相似文献   

17.
18.
We employ passive flow control using two-dimensional hydrofoils to reduce vortex-induced vibrations (VIV) and drag on a cylinder of circular cross-section. We test the hypothesis that by using foils to bend the streamlines around the cylinder, and hence forcing the flow to approach potential flow-like patterns VIV and drag will be reduced. A systematic parametric search, first using groups of two and then four foils, shows that it is possible to completely eliminate vibrations and reduce the drag coefficient to about Cd=0.50 at sub-critical Reynolds numbers. This parametric search is conducted in conjunction with force measurement and particle image velocimetry on a fixed towed cylinder. The effectiveness of the foils in regards to VIV was further tested with an apparatus allowing free transverse vibrations of a towed cylinder.  相似文献   

19.
Wavelet-based methods are reviewed, and their advantages in comparison to standard approaches are outlined. Then, a wavelet analysis is performed to investigate parametric vibrations of flexible plates under a sinusoidal load. In particular, a scenario leading from regular motion to chaos is analyzed  相似文献   

20.
Previous theoretical and experimental studies have shown that some vibrating systems can be stabilized by zero-averaged periodic parametric excitations. It is shown in this paper that some zero-mean random parametric excitations can also be useful for this stabilization. Under some conditions, they can be even more efficient compared to the periodic ones. Two-mass mechanical system with self-excited vibrations is considered for this comparison. The so-called bounded noise is used as a model of the random parametric excitation. The mean-square stability diagrams are obtained numerically by considering an eigenvalue problem for large matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号