首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes an analysis of 1H-1H residual dipolar couplings (RDCs) in diphenylmethane (DPM) dissolved in a nematic liquid crystal, reported by Celebre et al. [J. Chem. Phys. 118, 6417 (2003)]. In that article, the conformational distribution function for DPM was extracted from the RDCs, using the additive potential (AP) model which is based on the molecular-field theory. The AP approach is a powerful, and frequently used, tool for analysis of the nuclear-magnetic-resonance (NMR) parameters in liquid crystals. It requires, however, a priori knowledge of the functional form of the torsional potential, which may even for a simple molecule, such as DPM, be complicated to determine. Here, we analyze the same set of the RDCs using our APME procedure, which is a hybrid model based on the AP approach and maximum entropy (ME) theory. The APME procedure does not require any assumptions about the functional form of the torsional potential and, in contrast with the ME method, is applicable to weakly ordered systems. In the investigation reported in the present study, the results from the APME analysis are in good agreement with the AP interpretation, whereas the ME approach essentially fails in the extraction of the conformational distribution function for DPM.  相似文献   

2.
Tau, a natively unstructured protein that regulates the organization of neuronal microtubules, is also found in high concentrations in neurofibrillary tangles of Alzheimer's disease and other neurodegenerative disorders. The conformational transition between these vastly different healthy and pathological forms remains poorly understood. We have measured residual dipolar couplings (RDCs), J-couplings, and nuclear Overhauser enhancement (NOE) in construct K18 of tau, containing all four repeat domains R1-R4. NHN RDCs were compared with prediction on the basis of a statistical model describing the intrinsic conformational sampling of unfolded proteins in solution. While local variation and relative amplitude of RDCs agrees with propensity-based prediction for most of the protein, homologous sequences in each repeat domain (DLKN, DLSN, DLSK, and DKFD in repeats R1-R4) show strong disagreement characterized by inversion of the sign of the central couplings. Accelerated molecular dynamic simulations (AMD) in explicit solvent revealed strong tendencies to form turns, identified as type I beta-turns for repeats R1-R3. Incorporation of the backbone dihedral sampling resulting from AMD into the statistical coil model closely reproduces experimental RDC values. These localized sequence-dependent conformational tendencies interrupt the propensity to sample more extended conformations in adjacent strands and are remarkably resistant to local environmental factors, as demonstrated by the persistence of the RDC signature even under harsh denaturing conditions (8 M urea). The role that this specific conformational behavior may play in the transition to the pathological form is discussed.  相似文献   

3.
The proton NMR spectra of samples of 2-thiophenecarboxaldehyde dissolved in a nematic liquid crystalline solvent, including those from all five singly labelled 13C isotopomers, have been obtained. These have been analysed to yield sets of partially averaged dipolar couplings which have been used to determine the structure and the relative amounts of the cis and trans forms, which are the two minimum-energy structures generated by rotation about the ring-aldehyde bond. A procedure for applying vibrational corrections to the dipolar couplings in the presence of large amplitude motions is discussed.  相似文献   

4.
The grand canonical Monte Carlo technique is used to simulate the pressure-distance dependence for supported dilauroylphosphatidylethanolamine (DLPE) membranes. The intra- and intermolecular interactions in the system are described with a combination of an AMBER-based force field for DLPE and a TIP4P model for water. To improve the balance between the pair interactions of like and unlike molecules, the water-lipid interaction potentials are scaled to reproduce the hydration level and intermembrane separation at full hydration. It is found that the short-range water-mediated repulsion originates from the hydration component of the intermembrane pressure, whereas the direct interaction between the membranes remains attractive throughout the pressure range studied (0-5 kbar).  相似文献   

5.
An analysis of torsional motions about glycosidic bonds in a disaccharide is undertaken using residual dipolar coupling measurements and selective immobilization of the reducing end sugar to provide a suitable motional reference. The immobilization is accomplished by using the short chain of an alkyl glycoside to anchor the disaccharide to a bilayer medium aligned in magnetic field. Motions about the beta-(1-4) linkage of the n-butyl-4-O-beta-d-galactopyranosyl-alpha-d-mannopyranoside are shown to be substantial (+/-40 degrees ) and in good agreement with predictions of a fully solvated molecular dynamics simulation.  相似文献   

6.
The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a downwards tilt in the presence of anionic surface charge, relative to neutrality.  相似文献   

7.
8.
9.
Experiments are presented for the measurement of one-bond carbon-proton dipolar coupling values at CH and CH2 ositions in 13C-labeled, approximately 50% fractionally deuterated proteins. 13Cbeta-1Hbeta dipolar couplings have been measured for 38 of 49 possible residues in the 63-amino-acid B1 domain of peptostreptococcal protein L in two aligning media and interpreted in the context of side-chain chi1 torsion angle dynamics. The beta protons for 18 of the 25 beta-methylene-containing amino acids for which dipolar data are available can be unambiguously stereoassigned, and for those residues which are best fit to a single rotamer model the chi(1) angles obtained deviate from crystal structure values by only 5.2 degrees (rmsd). The results for 11 other residues are significantly better fit by a model that assumes jumps between the three canonical (chi1 approximately -60 degrees, 60 degrees, 180 degrees ) rotamers. Relative populations of the rotamers are determined to within +/-6% uncertainty on average and correlate with dihedral angles observed for the three molecules in the crystal asymmetric unit. Entropic penalties for quenching chi1 jumps are considered for six mobile residues thought to be involved in binding to human immunoglobulins. This study demonstrates that dipolar couplings may be used to characterize both the conformation of static residues and side-chain motion with high precision.  相似文献   

10.
11.
Force fields for Sulfur Hexafluoride (SF6) from the literature, were investigated by means of their ability to reproduce experimental data in a wide range of thermodynamic conditions, including liquid, gas, vapor–liquid coexistence curve as well as supercritical states. Experimental data include numerous PVT state points, corresponding structural properties in terms of radial distribution functions, diffusion coefficient and shear viscosity. The existing force fields were extensively examined in the framework of molecular dynamics simulations and it is found that they do not accurately reproduce the macroscopic properties of the fluid, especially at high densities. To overcome this problem with the aim to obtain improved potential parameters that better reproduce experimental data, a multi-variable optimization of the force field parameters procedure has been systematically applied based on the “Simplex” method. Finally, it is found that for some common functional forms of these force fields, the new optimized parameters predict better the experimental properties of SF6 under investigation compared to the original ones.  相似文献   

12.
13.
Hydrogen bonding in liquid alcohols: a computer simulation study   总被引:2,自引:0,他引:2  
A series of molecular dynamics simulations has been performed to investigate hydrogen bonding in liquid alcohols. The systems considered have been methanol, ethanol, ethylene glycol and glycerol at 298 K. The hydrogen bonding statistics as well as the mean lifetime of the hydrogen bonds are analyzed. The results are compared with those corresponding to liquid water.  相似文献   

14.
A new three-dimensional NMR experiment is described that yields five scalar or dipolar couplings from a single cross-peak between three spins. The method is based on the E.COSY principle and is demonstrated for the H1'-C1'-C2' fragment of ribose sugars in a uniformly 13C-enriched 24-nucleotide RNA stem-loop structure, for which a complete set of couplings was obtained for all nonmodified nucleotides. The values of the isotropic J couplings and the 13C1' and 13C2' chemical shifts define the sugar pucker. Once the sugar pucker is known, the five dipolar couplings between C1'-H1', C2'-H2', H1'-H2', C1'-H2', and C2'-H1', together with C1'-C2', C3'-H3', and C4'-H4' available from standard experiments, can be used to derive the five unknowns that define the local alignment tensor, thereby simultaneously providing information on relative orientation and dynamics of the ribose units. Data indicate rather uniform alignment for all stem nucleotides in the 24-nt stem-loop structure, with only a modest reduction in order for the terminal basepair, but significantly increased mobility in part of the loop region. The method is applicable to proteins, nucleic acids, and carbohydrates, provided 13C enrichment is available.  相似文献   

15.
A simple solution NMR method is presented for pucker determination of five-membered rings using only residual dipolar couplings obtained in a single liquid crystalline medium, DMPC/DHPC bicelles (DMPC = dimyristoylphosphatidylcholine; DHPC = dihexanoylphosphatidylcholine). The method was applied to determine the pucker of the fructofuranosyl ring of sucrose. The results indicate a fructofuranosyl pucker phase in the 20 degrees - 70 degrees range. The pucker phases are in agreement with those from previous NMR and optical spectroscopic studies and, importantly, do not rely on empirically parametrized Karplus curves. Furthermore, the analysis implies more than one stable pucker phase and rapid ring interconversion in this range. The present results suggest that using residual dipolar couplings alone can reveal multiple conformations present in solution. Hence, when a sufficient number of residual dipolar coupling constants is measured, the outcome is a robust, reliable, and independent route for determining carbohydrate and nucleic acid structure by NMR spectroscopy.  相似文献   

16.
Classic simulations are used to study interlayer structure, swelling curves, and stability of Ca-montmorillonite hydrates. For this purpose, NP(zz)T and muP(zz)T ensembles are sampled for ground level and given burial conditions. For ground level conditions, a double layer hydrate having 15.0 A of basal spacing is the predominant state for relative vapor pressures (p/p0) ranging 0.6-1.0. A triple hydrate counting on 17.9 A of interlaminar distance was also found stable for p/p0 = 1.0. For low vapor pressures, the system may produce a less hydrated but still double layer state with 13.5 A or even a single layer hydrate with 12.2 A of interlaminar distance. This depends on the established initial conditions. On the other hand, the effect of burial conditions is two sided. It was found that it enhances dehydration for all vapor pressures except for saturation, where swelling is promoted.  相似文献   

17.
Molecular dynamics simulations are reported for the four component nematic liquid crystal mixture E7, which is used commercially. We are able to show the growth of a nematic phase directly from an isotropic liquid over a 100 ns period for an all-atom model, and study orientational and dipole order within the nematic phase. The simulations show that the cyanoterphenyl component of the mixture, 5CT, is more ordered than the three cyanobiphenyl components. The simulations show also that both parallel and anti-parallel dipole correlation take place in E7 but that the strong anti-parallel dipole correlation is localised to particular arrangements of molecules. It is possible to identify two key preferred configurations for molecular pairs in the fluid, which explain the form of the dipole correlation function, g(1)(r).  相似文献   

18.
Molecular dynamics simulations were applied to normal conformational Glutathione (GSH) and GSH over zwitterionic and hydrophobic surfaces respectively. Conformational analysis of GSH during the simulation time on RMSD, conformational flexibility and dihedral distribution were performed. The re- sults showed that zwitterionic structure maintains the normal conformations of GSH to a better extent, which should be a first good proof of the hypothesis of "maintain of normal structure".  相似文献   

19.
The effect of four general anesthetic molecules, i.e., chloroform, halothane, diethyl ether and enflurane, on the properties of a fully hydrated dipalmitoylphosphatidylcholine (DPPC) membrane is studied in detail by long molecular dynamics simulations. Furthermore, to address the problem of pressure reversal, the effect of pressure on the anesthetic containing membranes is also investigated. In order to ensure sufficient equilibration and adequate sampling, the simulations performed have been at least an order of magnitude longer than the studies reported previously in the literature on general anesthetics. The results obtained can help in resolving several long-standing contradictions concerning the effect of anesthetics, some of which were the consequence of too short simulation time used in several previous studies. More importantly, a number of seeming contradictions are found to originate from the fact that different anesthetic molecules affect the membrane structure differently in several respects. In particular, halothane, being able to weakly hydrogen bound to the ester group of the lipid tails, is found to behave in a markedly different way than the other three molecules considered. Besides, we also found that two changes, namely lateral expansion of the membrane and increasing local disorder in the lipid tails next to the anesthetic molecules, are clearly induced by all four anesthetic molecules tested here in the same way, and both of these effects are reverted by the increase in pressure.  相似文献   

20.
We report molecular dynamics simulations of Newton black films (NBFs), ultra thin films of aqueous solutions stabilized with two monolayers of ionic surfactants, sodium dodecyl sulfate. We show that at low water content conditions and areas per surfactant corresponding to experimental estimates in NBFs, homogeneous films undergo an adhesion "transition," which results in a very thin adhesive film coexisting with a thicker film. We identify the adhesive film with the equilibrium structure of the Newton black film. We provide here a direct microscopic view of the formation of these important structures, which have been observed in experimental studies of emulsions and foams. We also report a detailed investigation of the structural properties and interfacial fluctuation spectrum of the adhesive film. Our analysis relies on the definition of an "intrinsic surface," which is used to remove the averaging effect that the capillary waves have on the film properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号