首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
通过静电纺丝、碳化和氨气刻蚀制备了具有核-壳结构的包覆氮化铁(FexN)纳米颗粒的Fe,N共掺杂多孔碳纳米纤维(FexN@Fe-N-C),并研究了其在酸性和碱性介质中对氧还原反应(ORR)的电催化性能.结果表明,该催化剂具有优异的氧还原催化活性,在酸性介质中的半波电位(E1/2)可达0. 81 V(vs. RHE),在碱性条件下的E1/2高达0. 897 V,高于商业Pt/C催化剂.在酸性介质中经过10000周加速衰减测试后,FexN@Fe-N-C的E1/2仅衰减了26 m V,展示出极佳的耐久性.离子探针和浓酸刻蚀实验结果表明,Fe-Nx以及FexN纳米颗粒均对ORR有重要催化作用.  相似文献   

2.
唐梅香  易清风 《应用化学》2013,30(10):1176-1181
在乙醇为溶剂和还原剂、碳粉为载体的体系中,采用水热法将Ag+或Ag+-Sn2+还原,形成纳米多孔网状结构的Ag或Ag-Sn双金属纳米颗粒,制备碳粉负载的Ag/C和Ag-Sn/C催化剂。 利用循环伏安和线性扫描技术,研究了碱性溶液中这些催化剂对氧还原反应(ORR)的电活性。 研究表明,Ag/C和Ag-Sn/C对ORR均表现出强的电催化活性,它们对ORR的起始电位约0.05 V(vs.Ag/AgCl)。 在Ag97Sn3/C催化剂上,ORR的电流密度为2.87×10-3 A/cm2(800 r/min),高于Ag/C。 Levich方程分析表明,在Ag-Sn/C催化剂上,ORR转移电子数明显大于Ag/C,说明在Ag-Sn/C催化剂上,氧气能够较为彻底被还原。 此外,在甲醇存在下,Ag/C和Ag-Sn/C对ORR的活性基本保持不变,表明它们对甲醇有较强的耐受力。  相似文献   

3.
采用简单的化学氧化聚合法制备了新型多孔结构的聚乙酰苯胺纳米纤维(np-PAANI), 并以此为载体在络合剂的存在下合成了Pt纳米微粒修饰的np-PAANI复合物膜电极C/np-PAANI/Pt. 样品的形貌和结构通过扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)进行了表征. 在0.5 mol·L-1 CH3OH+0.5 mol·L-1 H2SO4混合溶液中考察了C/np-PAANI/Pt催化剂对甲醇的电催化氧化性能. 结果表明, 以np-PAANI负载的Pt催化剂对甲醇的电催化氧化活性和稳定性都比普通PAANI结构及石墨粉负载的Pt催化剂好很多.  相似文献   

4.
Fe对Pt-Fe/C催化剂电催化氧还原反应活性的影响   总被引:1,自引:1,他引:0  
制备了用作直接甲醇燃料电池的碳载Pt-Fe(Pt-Fe/C)阴极催化剂, X射线能量色散谱(EDX)、X射线衍射谱和电化学测量的结果表明, 在Pt-Fe/C催化剂中, Fe以3种形式存在. 质量分数大约为20%的Fe进入Pt的晶格, 形成Pt-Fe合金, 质量分数大约为80%的Fe没有进入Pt的晶格而以Fe和Fe2O3的形式单独存在. 该催化剂经酸处理后, 非合金化Fe和Fe2O3被溶解, 而使Pt-Fe/C催化剂的电化学活性比表面积要比未经酸处理前的增加约30%左右, 导致Pt-Fe/C催化剂对氧还原的电催化活性优于未经酸处理前的Pt-Fe/C催化剂. 研究结果表明, Pt-Fe/C催化剂的电化学活性比表面积对氧还原的电催化活性起重要的作用, 另外, 只有与Pt形成合金的Fe能提高Pt对氧还原的电催化活性, 而非合金化的Fe对Pt催化剂对氧还原的电催化活性基本没有影响.  相似文献   

5.
开发多功能的纳米电催化剂可以提高单位催化剂表面活性密度.本课题组采用热解和还原工艺制备了具有多功能电催化性能的超小铂纳米颗粒耦合缺陷CoP的纳米材料(Pt/d-CoP/NPC),它具有较高的氧还原反应(ORR)半波电位(0.82 V).所合成的Pt/d-CoP/NPC电催化剂具有良好的电催化析氢反应活性,当反应活性达到10 mA cm-2时,过电位分别为33 mV@1mol/L KOH, 10 mV@0.5 mol/L H2SO4和70 mV@1 mol/L PBS.Pt/d-CoP/NPC催化剂还表现出较好的析氧反应活性.以合成的催化剂Pt/d-CoP/NPC作为电极组装的全解水装置和可充电锌空气电池具有良好的活性和稳定性,可以持续有效地驱动全解水产氢,在存储可再生能源方面的具有较好的应用潜力.采用X射线光电子能谱(XPS)、拉曼光谱测试和傅里叶红外光谱测试(FTIR)等技术研究了Pt颗粒与CoP之间的相互作用,并利用密度泛函理论(DFT)计算研究了催化剂的ORR反应机制.Pt/d-CoP/NPC在129.3 (2p<...  相似文献   

6.
马娟  隋琪  陆天虹 《应用化学》2014,31(11):1330-1335
Pt是质子交换膜燃料电池(PEMFC)阴极氧还原最好的催化剂,但价格昂贵,且易被渗透到阴极的燃料分子及中间体毒化,导致电池性能降低。 本文以乙二胺四甲叉膦酸(EDTMP)为配位剂和还原剂,采用配位自还原法快速合成银纳米粒子(Ag NPs),并研究了其对氧还原的电催化性能。 透射电子显微镜(TEM)、X射线衍射(XRD)等测试结果表明,Ag NPs分散性好且粒径均一,还原反应6 h所得Ag NPs的平均粒径约6 nm;循环伏安法(CV)等电化学测试发现,在碱性条件下此种合成方法制得的银作为电催化氧还原反应(ORR)的催化剂具有良好的催化活性,通过EDTMP配位自还原得到的Ag NPs对氧还原的半波电位(E1/2)比传统的NaBH4直接还原所制得Ag NPs的E1/2正移60 mV。  相似文献   

7.
分别利用液相热解法和浸渍还原法制备了碳载钯纳米催化剂(Pd/C),并研究了其对氧还原反应的电催化活性。与浸渍还原法相比,液相热解法得到的Pd/C催化剂虽然粒径较大,但表现出较好的氧还原反应(ORR)活性和稳定性.在所制备的Pd/C催化剂基础上,通过置换欠电势沉积的Cu原子单层,获得了Pt单层修饰的Pd/C催化剂,其ORR活性较Pd/C催化剂有显著提高,且与纯Pt/C催化剂接近,而其耐久性则较纯Pt/C催化剂有显著提升,显示出Pt单层催化剂的潜在优势.  相似文献   

8.
氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重. Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C, N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.
  本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中, EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m2/g,孔径约1.1 nm.在第二步热解过程中, N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m2/g.
  电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中, Fe-N-C电催化剂对ORR具有良好的催化活性, ORR起始电位(Eo)为1.08 V (vs. RHE),半波电位(E1/2)0.88 V,电子转移数n接近4, H2O2产率<3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明, Fe-N-C的E1/2未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO4)中, Fe-N-C的Eo为0.85 V, E1/2为0.75 V,其E1/2比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明, Fe-N-C较好的ORR活性主要来自于高分散的Fe-N4结构,此外, N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.
  与Pt/C相比, Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm2(Pt/C).结合半电池结果表明, Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.  相似文献   

9.
质子交换膜燃料电池(PEMFCs)能量转换率高,反应产物仅为H2O、不造成污染,是一种极具发展前景的能源转换装置.然而, PEMFCs的阴极氧还原反应(ORR)动力学缓慢、过电位高.由于Pt对ORR中间产物脱吸附能适中,因此, Pt/C成为电催化ORR的商业化催化剂,对其制备技术的研究成为该领域的研究热点.乙二醇(EG)还原法制备碳载Pt基催化剂是一种常见方法, EG作为还原剂的同时,还起到保护剂和分散剂的作用,使制备的催化剂具有均一性.EG在外界能量的活化下,分解生成H2O和CH3CHO, CH3CHO作为还原剂将H2Pt Cl6还原生成Pt单质颗粒,同时生成的CH3COO-由于静电排斥可以防止Pt粒子团聚.常见的外界能量的活化方法有脉冲微波法、回流法、溶剂热法等,其中溶剂热法采用高压釜作为反应容器,抗干扰能力强,工艺操作简单、反应快速、耗能较少、成本低廉,极易于实现工业化生产;值得注意的是,无论使用何种方法对Pt前驱体混合液给予活化能使其发生还原,其碱的含量都会对最终所得催化剂的电催化ORR活性有着显著的影响,因此,通过跟踪前驱体混合液中含Pt物种的变化路径,揭示催化剂制备过程中的碱调控机理,实现加入碱的定量化,对于大规模制备高效Pt/C催化剂具有重要的意义.因此,本文采用溶剂热助EG还原法合成Pt/C催化剂的技术,创新联用UV-vis和H+浓度探针技术,揭示了前驱体混合液中含Pt物种的配位过程,实现了加入碱的定量化.发现当m(Na OH):m(Pt)达到2:1时, Pt配位完成;进而通过优化反应温度、反应时间等参数,成功制备了高效Pt/C催化剂:当反应温度为140 oC,反应时间为2 h时,所得催化剂在酸性条件下,相对于商业化Pt/C具有更高的电催化ORR活性,其起始ORR还原电位达到0.95 V(商业化Pt/C为0.90 V),半波电位为0.82 V(商业化Pt/C为0.75 V),该工作对于工业化大批量生产高效Pt/C催化剂具有重要的意义.  相似文献   

10.
Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M (M = Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110 ℃C反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H2SO4和0.5 mol/L CH3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号