首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles with different surface arrangements of PS and P2VP ligands supports evidence for the rearrangement of thiol terminated homopolymers. An upper limit estimate of the adsorption energy of nanoparticles uniformly coated with a random arrangement of PS and P2VP ligands where a 10% surface area was occupied by P2VP -mers or chains was approximately 1 kBT, which indicates that such nanoparticles are unlikely to be segregated along the interface, in contrast to the experimental results for nanoparticles with mixed ligand-coated surfaces.  相似文献   

2.
Random and block copolymers of styrene and 2-vinylpyridine, covering the full range of composition, have been synthesized. The adsorption of these polymers from trichloroethylene solution on to precipitated silica has been studied and their ability to impart colloidal stability to the silica dispersions also investigated. Estimates of the layer thickness of adsorbed copolymers have been made. Polystyrene is not adsorbed from trichloroethylene and does not stabilize dispersions of precipitated silica. A random copolymer having 1% 2-vinylpyridine units is adsorbed but shows very little steric stabilization. Random copolymers of 2-vinylpyridine content greater than 10% and AB block copolymers of more than 6% 2-vinylpyridine behave very similarly in respect both of the quantity adsorbed and in their ability to stabilize silica suspensions. Layer thickness does not seem to depend on copolymer composition. Random copolymers with low to intermediate 2-vinylpyridine contents are better steric stabilizers in trichloroethylene than are the corresponding copolymers of methyl methacrylate with styrene: this is attributed in part to the longer sequences of adsorbable units in the vinylpyridine copolymers.  相似文献   

3.
Spherical particles were prepared from poly[2-(perfluorooctyl)ethyl acrylateco-acrylic acid] random copolymers (P(POA-co-AA)) by self-assembly in supercritical carbon dioxide (scCO2). The P(POA-co-AA) copolymers with 9:1, 8:2, 7:3, and 6:4 molar ratios of the POA/AA unit completely dissolved in scCO2, however, the solubility was dependent on the POA/AA ratio. The copolymer with the higher AA content had a lower solubility. The scanning electron microscopy (SEM) observations revealed that the spherical particles were obtained in a heterogeneous state at pressures lower than the cloud point pressure. Dynamic light scattering and 1H NMR studies demonstrated that the copolymers formed random copolymer micelles consisting of the shells of the CO2-philic POA units and the cores of the CO2-phobic AA units and main chains. It was found that the formation of spherical particles could be optimized by the manipulation of the CO2 pressure and temperature for the different compositions of the copolymers.  相似文献   

4.
5.
The stimuli-responsive copolymers with poly(ethylene oxide) (PEO) as side chain were prepared by free-radical copolymerization of methacrylamide end-capped PEO macromonomer and 4-vinylpyridine (4VP). Phase transition behavior of these copolymers of poly(4-vinylpyridine)-g-poly(ethylene oxide) (P4VP-g-PEO) was investigated as a function of polymer concentration, temperature, pH and ionic strength by monitoring the turbidity of the polymer solutions. The copolymers displayed sharp response to temperature and pH. The LCST of P4VP-g-PEO copolymer increased with the increase of PEO content and decreased with increasing pH due to the deprotonation of the pyridine ring, indicating well-tunable LCST. In addition, the LCST of P4VP-g-PEO9 presented a unique phase transition behavior with varying salt concentration, showing a minimum with 1 M NaCl solution at pH 6.0.  相似文献   

6.
The lower critical solution temperature (LCST) behaviors of random and segmented copolymers of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) prepared in dioxane and water have been investigated by using ultrasensitive microcalorimetry (US-DSC). The introduction of AA increases the LCST of the former but slightly affects that of the latter. When the molar fraction of AA is low (approximately 2 mol %), the LCST of the segmented copolymer shifts to a higher temperature with increasing pH, while the LCST of the corresponding random copolymer slightly changes. Below the boiling point of water, the random copolymer and segmented copolymer with the molar fraction of AA about 15 mol % no longer exhibit an LCST at pH > 5. The addition of calcium ions leads the LCST of both the segmented copolymer and random copolymer to decrease. Our results suggest that the LCST behavior of the copolymers is determined by the clustering of poly(N-isopropylacrylamide) segments.  相似文献   

7.
The adsorption of cationic copolymers prepared by the quaternization of poly(4-vinylpyridine) with bromoacetic acid and/or ethyl bromide on the surface of anionic glass microspheres and the stability of the as-prepared complexes against dissociation in water-salt solutions are studied. Experiments are performed with the use of two types of copolymers: copolymers carrying cationic and hydrophobic units and copolymers carrying cationic and zwitterionic (electroneutral) units in main chains. For hydrophobic copolymers, the limiting adsorption decreases as the molar fraction of cationic groups in the copolymer, α, increases. In the case of hydrophilic copolymers, the dependence of limiting adsorption on α has a bellshaped pattern with a maximum at α = 0.15 and a horizontal segment at α > 0.4. Hydrophobic copolymers feature irreversible binding with microspheres at α > 0.24; hydrophilic copolymers, at α ≥ 0.15. The obtained data may be used for creation of biocidal polymer coatings and sorption layers that reversibly desorb from the surface with a change in the salt concentration in the surrounding aqueous solution.  相似文献   

8.
Two types of miscible poly(ε-caprolactone-co-ε-caprolactam) copolymers were studied. In both cases catalyzed hydrolytic ring-opening polymerization was employed. For the first type, the comonomers were added simultaneously to obtain random copolymers. For the second type, the comonomers were added sequentially to obtain block copolymers. Successive self-nucleation and annealing (SSA) and isothermal crystallization studies were performed to both types of copolymers. The SSA results reflect the differences in molecular microstructure: block versus random copolymers. In a wide composition range only the polycaprolactam sequences were capable of crystallization in the random copolymers. Avrami indexes of approximately 3-4 were obtained corresponding to the spherulitic crystallization of these units within the copolymers. The block copolymer samples experienced a relatively small reduction of crystallization kinetics with composition, and this was attributed to the dilution effect caused by the miscible non-crystalline polycaprolactone units. On the other hand, for the random copolymers, the rate of crystallization strongly increased with polycaprolactam content while the energy barrier for secondary nucleation decreased exponentially. The comparison between miscible block and random copolymers provides a unique opportunity to distinguish the dilution effect of the polycaprolactone units (a moderate effect) on the isothermal crystallization and melting of the polyamide phase from the molecular microstructural effect in the random copolymers case (a dramatically strong effect), where the polycaprolactam sequences are interrupted statistically by polycaprolactone sequences.  相似文献   

9.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

10.
Solution properties of copolymers [C(MA-Py)x] of methacrylic acid and 4-vinylpyridine and intermacromolecular complexes of poly(methacrylic acid) (PMAA) and poly(4-vinylpyridine) (PVP) in the presence or absence of a proton-accepting water-soluble polymer such as poly(ethylene glycol) (PEG) in water/methanol mixed solvent are studied by potentiometric titration, turbidity and viscosity methods. These copolymers behave like polyampholytes and their solubilities are strongly dependent with pH changes. The pH regions where they are precipitated around their isoelectric points are narrower than those of the intermacromolecular complex of PMAA with PVP. The polyampholyte can form an intermacromolecular complex with PEG in acidic solution but this complex is soluble in the medium.  相似文献   

11.
We have synthesized poly(methyl methacrylate- b-4-vinylpyridine) (PMMA- b-P4VP) and poly(styrene- r-vinylphenol) (PS- r-PVPh) copolymers by using anionic and free radical polymerizations, respectively. Well-defined micelles through hydrogen bonding have been prepared by mixing PMMA- b-P4VP diblock copolymer and PS- r-PVPh random copolymer in a single solvent. Block copolymers were mixed with random copolymers, with various [N]/[OH] ratios (4/1, 2/1, 1/1, and 1/4) in which "[N]/[OH]" represents the molar ratio of pyridine groups on P4VP to hydroxyl groups on PVPh. The presence distribution of PVPh/P4VP and PVPh/PMMA hydrogen bonding depends on the feeding ratio of PVPh to P4VP. When the PVPh content is lower than that of P4VP, hydrogen bonding occurs only between PVPh and P4VP; with excess PVPh, additional hydrogen bonding between PVPh and PMMA would occur. Furthermore, the effect of the solvent quality on the self-assembly behavior of PMMA- b-P4VP/PS- r-PVPh blends is investigated by considering tetrahydrofuran (THF) and dimethylformamide (DMF) as common solvents. We can mediate the strength of hydrogen bonding in blend systems by adopting different solvents and inducing different morphology transitions.  相似文献   

12.
含硫醚和二氮杂萘酮结构聚芳醚酮的合成与性能   总被引:6,自引:0,他引:6  
通过 4 ,4′ 硫代二酚 (TBP)、4 (4 羟基苯基 ) 2 ,3 二氮杂萘 1 酮 (DHPZ)与 4 ,4′ 二氟二苯酮 (DFK)反应合成出不同组分的高分子量共聚芳醚酮 .对聚芳醚酮的结构进行了FT IR、1 H NMR和1 3C NMR表征 ,表明共聚酮为无规结构 .对共聚芳醚酮的热性能、结晶性能、拉伸性能、溶解性能进行了测试 ,结果表明随硫醚结构含量的增加 ,共聚醚酮的玻璃化转变温度降低 ,材料韧性增强 ,溶解性能变差 ,所得的共聚物为无定型态 ,但由TBP和DFK制得的均聚醚酮为半结晶性  相似文献   

13.
For the first time, the polyelectrolyte complex (PEC) formation tool was used for preparation of core‐shell nanoparticles form the natural polyampholyte N‐carboxyethylchitosan (CECh) and weak polycationic (protonated) polyoxyethylene‐b‐poly[2‐(dimethyl‐amino)ethyl methacrylate] (POE‐b‐PDMAEMA) diblock copolymers. The performed dynamic light scattering analyses revealed that nanoparticles with a PEC core and a POE shell could be formed at mixing ratio between the oppositely charged groups equal to 1/1 depending on CECh molar mass, polymerization degree of PDMAEMA block and ionic strength. The results were confirmed by the performed AFM and cryo‐TEM analyses. When high molar mass CECh was used, core‐shell nanoparticles were obtained with the diblock copolymer of the shortest PDMAEMA block at ionic strength (I) of 0.01. At ionic strength value close to the physiological one (I = 0.1) secondary aggregation occurred. Spherical nanoparticles at I = 0.1 were obtained upon lowering the CECh molar mass. Depending on the polymer partners and medium parameters the size of the obtained particles varied from 60 to 600 nm. The X‐ray photoelectron spectra evidenced the hydrophilic POE‐block shell—coacervate CECh/PDMAEMA‐block core structure. The nanoparticles are stable in a rather narrow pH range around 7.0, thus revealing the high pH‐sensitivity of the obtained core‐shell particles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2105–2117, 2009  相似文献   

14.
The properties of aqueous solutions of acrylic acid-ethyl methacrylate (EMA) copolymers have been investigated using pyrene and pyrene pyrenebutyltrimethylammonium (PBTA) as probes. Static and dynamic fluorescence have been used to obtain information about the microenviron-ments formed. Micropolarity studies using the I1/I3 ratio of the vibronic bands of pyrene show the formation of hydrophobic domains. At low pH the increase of the amount of ethyl methacrylate in the copolymers shows that aqueous microdomains are excluded from the core of the polymer, for the copolymers with high content of EMA low polarity microdomains are still present on the mac-romolecular chain even at higher pH. The pH-induced conformational transition indicates that the more hydro-phobic copolymers adopt a more tightly coiled conformation. Compared to PAA, the decay times for both probes are increased twice for the polymer with 25% molar proportion of EMA. The fluorescence quenching of the probes by nitromethane depends on pH, copolymer composition and probe structure. The efficiency of quenching decreases with increase of the EMA proportion in the copolymers. Pyrene is more efficiently quenched than PBTA as a consequence of the latter being located in more internal (less accessible) sites of the polymer structure.  相似文献   

15.
Copolymers of methacrylic acid (MAA) and a nonionic hydrophilic monomer N-vinylpyrrolidone (NVP) were synthesized by polymerization in aqueous solution in the absence of metal ions. The NVP content of the copolymers ranged from 2 to 36 mole % with sequences of MAA interrupted at random by a single unit of NVP at all compositions. The pH-induced conformational transition of these copolymers was followed by potentiometric titration and viscosity studies and the results were compared with those of pure poly(methacrylic acid) (PMAA). The negative free energy of transition from the un-ionized compact from to expanded structure showed a gradual decrease with increasing NVP content, and the collapsed conformation observable for PMAA at low degrees of ionization (0 < α < 0.3) disappeared at NVP contents greater than 15 mole%. These findings are supported by viscosity data. The results suggest that long-range methyl–methyl hydrophobic contacts still possible in higher NVP content copolymers are not sufficient to bring about the collapse of the molecule and a minimum average sequence length of about 20 MAA units is required to compact the molecule. Hydrophilic “shielding” of MAA chains by NVP segments could also partly destabilize the collapsed structure.  相似文献   

16.
Poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) have been mixed in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Those insoluble complexes aggregate to form the core of micelles surrounded by a corona of PS chains. Reorganization of these structures occurs upon addition of acidic or basic water, which results in the breaking of the hydrogen bonds between the P4VP and PAA blocks. After transfer of the initial complexes in acidic water, micelles consisting of a PS core and a protonated P4VP corona are observed. In basic water, well-defined nanoparticles formed by the PS-b-P4VP copolymers are obtained. It is demonstrated that these nanoparticles are stabilized by the negatively charged PAA chains. Finally, thermally induced disintegration of the micelles is investigated in organic solvents.  相似文献   

17.
Six copolymers of 4-vinylpyridine and 4-vinyl-N-phenacyloximepyridinium bromide (PPyOx-12, 23, 40, 50, 60 and 72 per cent) were prepared from poly-4-vinylpyridine partially quaternized by phenacylbromide (PPyKt) and hydroxylamine. The potentiometric data of the polymer acid groups (oxime, keto-enol tautomerism) in PPyOx and PPyKt were compared with those of 4-ethyl-N-phenacyloximepyridinium bromide (PyOx) and 4-ethyl-N-phenacylpyridinium bromide (PyKt) respectively. In addition, the second-order constants of the nucleophilic reaction for all the copolymers (PPyOx) and the analogue towards p-nitrophenylacetate (NPA) were determined at various pH values in water at 25°. In contrast to the known potentiometric behaviour of polyacrylic and polymethacrylic acids, the dissociation constants (pKa) of acid groups in PPyKt and PPyOx were found to be independent of the degree of ionization. Moreover, the values of pKa of these groups for all PPyKt and PPyOx samples were appreciably less than the pKa of the corresponding analogues. As a consequence, the oxime of PPyOx-12 in the range of pH between 7·5 and 9·0 reacts about two order of magnitude faster than the monomer with the ester. These results indicate that, in contrast to the known correlation between reactivity (nucleophilicity) and basicity for monomer compounds, the activity of the polymer oxime does not diminish with a decrease of the basicity. On the contrary, the reactivity of polymer anion towards the ester is markedly higher than that of the monomer anion of PyOx. An explanation may be found in the effects of microenvironment on the property of the functional groups attached to the side pyridine residues of PVP.  相似文献   

18.
A series of hexylamine modified polysuccinimide (PSI–HA) copolymers were synthesized by aminolysis of polysuccinimide (PSI) with hexylamine. FTIR and 1H NMR measurements confirmed the structure of the copolymers and the substitution degree of the N-hexyl aspartamide units ranged from 7 to 92 mol%. Stable nanoparticles formed when the DMF solution of PSI–HA copolymers was dropped into excess water, and the particle size reduced as increasing the substitution degree. 1H NMR analysis indicated that hexyl chain and succinimide units interacted to form the hydrophobic core, while, the nanoparticles were stabilized by the amide groups which formed hydrogen bonds with the surrounding water molecules. The nanoparticles became more compact at higher temperature due to the break of hydrogen bonds between amide groups and water molecules. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results showed that the nanoparticles were nearly spherical. Larger nanoparticles formed when the dispersion concentration increased from 0.1% to 1.0% according to the DLS and steady-state fluorescence measurements. After the nanoparticles formed in water, a sequential dilution can't influence the particles size of the nanoparticles any longer.  相似文献   

19.
A reversible addition-fragmentation chain transfer (RAFT) agent, the methyl-2-(n-butyltrithiocarbonyl)propanoate (MBTTCP) has shown to be efficient in controlling the polymerization of N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM) and N-acryloyloxysuccinimide (NAS). Two different strategies have been studied to synthesize block copolymers based on one PNIPAN block and the other a random copolymer of DMA and NAS. When a PNIPAM trithiocarbonate-terminated is used as macromolecular chain transfer agent for the polymerization of a mixture of NAS and DMA, well-defined P(NIPAM-b-(NAS-co-DMA)) block copolymers were obtained with a low polydispersity index. These thermoresponsive block copolymers dissolved in aqueous solution at 25 °C and self-assembled into micelles when the temperature was raised above the LCST of the PNIPAM block. The micelle shell containing NAS units was further crosslinked using a primary diamine in order to get shell-crosslinked nanoparticles. Upon cooling below the LCST of PNIPAM this structure may easily reorganize to form nanoparticles with a water filled hydrophilic core.  相似文献   

20.
采用氨基酸-N-内羧酸酐(氨基酸-NCA)开环聚合的方法, 并通过改变开环聚合时谷氨酸-N-内羧酸酐(BLG-NCA)与赖氨酸-N-内羧酸酐[Lys(Z)-NCA]的投料比以及BLG-NCA与鸟氨酸-N-内羧酸酐[Orn(Z)-NCA]的投料比, 经过脱保护和胍基化反应得到一系列谷氨酸赖氨酸无规共聚物Poly(E,K)和谷氨酸精氨酸无规共聚物Poly(E,R). 核磁共振氢谱(1H NMR)和核磁共振定量碳谱(13C NMR)分析结果表明, 合成了无规共聚物Poly(E,K)和Poly(E,R), 且二者中不同氨基酸的摩尔比接近开环聚合时相应NCA的投料比. 动态光散射(DLS)测定结果表明, 无规共聚物在pH=7.4的正常生理环境中形成的胶束粒径均一、 尺寸小于200 nm. Zeta电位表征结果表明, 无规共聚物Poly(E,K)和Poly(E,R)的Zeta电位值随着溶液pH值的变化而变化, 具有pH敏感性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号