首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of palladium silicide Pd2Si by rapid thermal annealing of Pd layers on silicon has been studied as a function of annealing time (1–60s) in the temperature range 350–500 °C. It is shown that the results found for conventional furnace annealing (long duration, low temperature) can be extrapolated for rapid thermal annealing (shorter time, higher temperature) when taking into account the exact time dependence of the short temperature cycle. The growth rate is essentially diffusion limited and the activation energy is close to 1.1±0.1 eV. Silicide resistivity of about 30–40 cm was obtained for 200–400 nm thick Pd2Si layers formed at 400 °C for a few seconds.  相似文献   

2.
Thin films of epitaxial NiSi2 and CoSi2 were formed by short-duration incoherent light exposure of evaporated Ni or Co films on <111> Si single crystals. The crystalline quality of these suicides is comparable to what has been obtained for long-duration furnace annealed suicides, as deduced from channeling measurements. NiSi2 is of high crystalline quality at all temperatures at which it is formed whereas the CoSi2 films recrystallize at a temperature of 980°C.  相似文献   

3.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

4.
The origin of the ion beam mixing effect, which causes the formation of smooth silicide films, is investigated for the Ti/Si solid-phase silicidation reaction. Ge ion beam mixing of a conventional Ti/c-Si structure with an oxide-contaminated interface shows an obvious effect when the implant conditions are such that the Ti/Si interface is amorphized. On the other hand, silicidation without ion mixing for Ti/a-Si and Ti/c-Si structures with oxide-free interfaces, prepared by sequential deposition in UHV, results in smooth and rough film surfaces, respectively. This strongly suggests that the ion beam mixing effect primarily comes from the amorphization of the Si substrate surface rather than the destruction of the interfacial oxide film.  相似文献   

5.
Discrete NiSi nanocrystals were synthesized by rapid thermal oxygen annealing of very thin Si/Ni/Si films on a SiO2 tunneling layer. They were used to fabricate metal?Coxide?Csemiconductor capacitor memory. Electrical properties of the memory device such as programming, erasing and retention were characterized and good performance was achieved.  相似文献   

6.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

7.
The presented work describes behavior of contact structures of Ni/Ti type on 6H-SiC n-type. The best contact resistivity obtained is 3.3 × 10−4 Ω cm2. The structure showed excellent thermal stability, it was stable after being tested for 10 h at 900 °C. XRD analysis after annealing at 960 °C revealed orthorhombic Ni2Si as the dominate phase.  相似文献   

8.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

9.
We report a study of the formation of tungsten silicide at the W-Si interface, induced by multipulse (up to 300 shots) XeCl excimer-laser irradiation of W(150 nm)/Si and W(500 nm)/Si samples. Laser fluences ranging from 0.6 to 1.8 J/cm2 were used. After laser treatment the samples were examined by different diagnostic techniques: Rutherford backscattering spectrometry, X-ray scattering, resistometry, and surface profilometry. Numerical computations of the evolution and depth profiles of the temperature in the samples as a consequence of a single 30 ns laser pulse were performed as well. The results indicate that it is possible to obtain a tungsten silicide layer at the W-Si interface at quite low fluences. The layer thickness increases with the number of laser pulses. Complete reaction of the 150 nm thick W film with silicon was obtained at the fluence of 1.2 J/cm2 between 30 and 100 laser pulses and at 1.5 J/cm2 after 30 laser pulses. The sheet resistance of these silicides was 5–10 . At the used fluences for the 500 nm thick W film only the onset of silicide synthesis at the W-Si interface was observed.  相似文献   

10.
Double heterojunctions having the material combinations InP/GaInAs/InP, GaAs/GaInAs/GaAs and InP/GaInAsP/InP have been studied to assess their potential for double-drift region (DDR) IMPATT diodes. An accurate and realistic computer simulation program has been framed and used for the dc and high-frequency analysis of the DDRs. The analysis is carried out both in IMPATT (IMPact Avalanche Transit Time) and MITATT (MIxed Tunnelling Avalanche Transit Time) modes. Our results indicate that the GaAs/GaInAs/GaAs DDR would provide the best mm-wave performance up to sufficiently high frequencies. Further, the performance of the DDR diodes is observed to deteriorate at high frequency of operation due to phase distortion introduced by tunnel injected current, which is found to be the least in the case of GaAs/GaInAs/GaAs DDR leading to the best performance of this DDR amongst the three.  相似文献   

11.
We report the results of passivation of n-GaAs surface by Langmuir-Blodgett films. The capacitance-voltage and current-voltage characteristics in a metal-insulator-semiconductor configuration fabricated using films as insulators, show that the frequency dispersion of the accumulation capacitance is small, indicating that the high frequency capacitance under accumulation is due to the LB film. It has been shown that it reduces the surface barrier characteristic of GaAs surfaces, and may offer hope for unpinning the surface Fermi level. We offer a possible explanation for these findings in terms of the advanced unified defect and the effective work function models.  相似文献   

12.
The kinetics of Ni2Si growth from pure Ni and from Ni0.93V0.07 films on (111) and (100) silicon has been studied by the combination of He+ backscattering, x-ray diffraction, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) techniques. The activation energies are 1.5 and 1.0 eV for pure Ni and Ni(V) films, respectively while the pre-exponential factors in Ni(V) are 4–5 orders of magnitude smaller than in the pure Ni case. The variations in the measured rates are related to the different grain size of the growing suicide layers. The vanadium is rejected from the silicide layer and piles up at the metalsilicide interface.  相似文献   

13.
A comparison of growth kinetics of titanium silicide obtained from the reaction of titanium layers on silicon after heating either by conventional thermal annealing or by rapid thermal annealing (RTA) has been undertaken. Very close results have been found for both treatments when sufficient care has been taken to avoid oxygen contamination during any step of the process. This indicates that no enhanced silicidation reaction is due to RTA itself. However, for oxygen contaminated samples, the kinetics remains essentially the same for RTA while it is showed down for furnace annealing. Then in contrast with conventional annealing, RTA is able to reduce the oxygen influence and to give the real kinetics even on samples containing large amounts of oxygen.  相似文献   

14.
Incorporation of a thin insulating layer of polymer-like polyimide deposited by pulsed laser evaporation technique between metal and n-GaAs has resulted in diode structures with MIS and Schottky-barrier-type capacitance-voltage and current-voltage characteristics. These structures have the potential to be useful in improving the performance of GaAs FETs for microwave and high-speed applications.IICT communication No. 2934  相似文献   

15.
We present a self-consistent model of spin transport in a ferromagnetic (FM)-semiconductor (SC)-FM trilayer structure with interfacial barriers at the FM-SC boundaries. The SC layer consists of a highly doped n2+ AlGaAs-GaAs 2DEG while the interfacial resistance is modeled as delta potential (δ) barriers. The self-consistent scheme combines a ballistic model of spin-dependent transmission across the δ-barriers, and a drift-diffusion model within the bulk of the trilayer. The interfacial resistance (RI) values of the two junctions were found to be asymmetric despite the symmetry of the trilayer structure. Transport characteristics such as the asymmetry in RI, spin-injection efficiency and magnetoresistance (MR) are calculated as a function of bulk conductivity σs and spin-diffusion length (SDL) within the SC layer. In general a large σs tends to improve all three characteristics, while a long SDL improves the MR ratio but reduces the spin-injection efficiency. These trends may be explained in terms of conductivity mismatch and spin accumulation either at the interfacial zones or within the bulk of the SC layer.  相似文献   

16.
The crystallization of vacuum-deposited amorphous Dy-Fe thin films was studied by transmission electron microscopy and electron diffraction. The effect of thickness, deposition rate and substrate temperature on the crystallization process have been investigated. The results show that the crystallization thicknessd c decreases with increasing deposition rate and substrate temperature. The number density of Dy-Fe islands were found to be almost constant at (4–5)×1011 cm–2 in the thickness range 20 Å<d <50 Å. The number density decreases with increase ind c .  相似文献   

17.
A simple selection rule for epitaxial growth techniques, which is based on morphological stability of the substrate surface is proposed. According to this rule a certain growth technique should be used for preparing a specific device structure of a three-dimensional monolithically integrated optical or electronic circuit. The formulae for morphological stability functions for LPE, MO, VPE, and MBE growth techniques are given. Calculations performed for the GaAs/Al x Ga1–x As material system by using the linear morphological stability theory of Mullins and Sekerka suggest that from the point of view of morphological stability the most suitable growth technique for fabrication of three-dimensional monolithically integrated optical and electronic device structures is the MBE technique.On leave from the Institute of Physics, Polish Academy of Sciences, PL-02-668 Warsaw, Poland  相似文献   

18.
The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the Ti/p-Si Schottky barrier diodes (SBDs) have been investigated taking into account the effect of the interface states and series resistance of the device. The forward C-V measurements have been carried out in the range frequency of 0.3-2 MHz (at six different frequencies). It is seen that the forward C-V plots exhibit anomalous peaks in the presence of a series resistance. It has been experimentally determined that the peak positions in the C-V plot shift towards lower voltages and the peak value of the capacitance decreases with increasing frequency. In addition to, the effect of series resistance on the capacitance is found appreciable at higher frequencies due to the capacitance decreases with increasing frequency.  相似文献   

19.
The optical transmission of CoSi2 films of thickness 2.6–15 nm is measured in the wavelength range 1–20 m. The optical constants are evaluated by taking into account multiple reflections in the film and by fitting a Drude model. The plasma frequency p=5.4–7.6 eV is equivalent to a carrier density n eff=3×1022 cm–3 and one carrier per unit cell. The relaxation frequency of the plasma resonance assumes high values =2 eV near the interface to silicon and decreases into the bulk film over several nanometers. Films grown off-axis from the (111) Si orientation exhibit an enhanced relaxation frequency.  相似文献   

20.
Diamond-like carbon films prepared by pulsed-laser evaporation   总被引:1,自引:0,他引:1  
Diamond-like carbon thin films were prepared by pulsed-laser evaporation. In this method a carbon target was irradiated by a XeCl laser with a power density of 3×108 W/cm2 and carbon atoms, together with a small number of ions, were produced. Deposition rates and film properties changed sensitively with substrate temperature. The films deposited at 50°C were diamond-like, having reasonable hardness, high refractive index (2.1–2.2 at 633 nm), optical transparency in the infrared, electrical resistivity of 108 cm and chemical inertness (no dissolution in a HFHNO3 solution). The band gap measured from optical absorption was 1.4 eV. Raman spectrum and infrared absorption, whose features varied with the substrate temperature, were also measured. The films were amorphous and no crystallinity was observed, as confirmed by x-ray diffraction, transmission electron diffraction and Raman spectroscopy. Hydrogen atoms were incorporated in the films with a typical H/C ratio of 0.3. The application of a negative bias to the substrate modified the deposition due to the presence of ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号