首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turbulent flow of an incompressible fluid is considered in a plane channel, a circular tube, and the boundary layer on a flat plate. The system of equations describing the motion of the fluid consists of the Reynolds equations and the mean kinetic energy balance equation for turbulent fluctuations. On the basis of an analysis of experimental data, hypotheses are formulated with respect to the eddy kinematic viscosity and lengthl entering into the expression for specific dissipation of turbulent energy into heat. It is assumed that in the central (outer) region of the flow in a channel, andl are constants, and expressions are taken for them which are used for a free boundary layer; near the walll varies linearly and almost linearly. Results of calculations of the turbulent energy distribution, the mean velocity, and the drag coefficient are in good agreement with the existing experimental data. The values of two empirical coefficients, which enter into the system of equations as the result of the hypotheses, are close to those obtained for a free boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–33, May–June, 1973.  相似文献   

2.
A study is made of the problem of a two-dimensional turbulent boundary layer on the moving surface of a cylindrical body (a Rankine oval with a relative elongation of four) moving at constant velocity in an incompressible fluid. For the numerical simulation of the turbulent flow of the fluid, the boundary layer is divided into exterior and interior regions in accordance with a two-layer model, using different expressions for the coefficients of turbulent transfer for each region. A study was nade of the development of the boundary layer on the body at different speeds of the body surface and different Reynolds numbers. The following integral characteristics were found by numerical calculation: the work of friction as the body is displaced; the work expended on the movement of its surface; and, for a flow regime with separation, the work of the pressure force. In this case the following model of separation flow is assumed: beyond the singular point in the solution of the boundary layer equations that indicates the appearance of a region of reverse flow, the pressure and friction stress on the wall are constant and are determined by their values at the singular point.Translated from Izvestiya Akademii Nauk SSSH, Mekhanika Zhidkosti i Gaza, No. 5, pp. 61–67, September–October, 1984.Finally, the author would like to thank G. G. Chernyi and Yu. D. Shevelev for useful discussions and for their interest in this work.  相似文献   

3.
The flow in the boundary layer in the vicinity of the stagnation point of a flat plate is examined. The outer stream consists of turbulent flow of the jet type, directed normally to the plate. Assumptions concerning the connection between the pulsations in velocity and temperature in the boundary layer and the average parameters chosen on the basis of experimental data made it possible to obtain an isomorphic solution of the boundary layer equations. Equations are obtained for the friction and heat transfer at the wall in the region of gradient flow taking into account the effect of the turbulence of the impinging stream. It is shown that the friction at the wall is insensitive to the turbulence of the impinging stream, while the heat transfer is significantly increased with an increase in the pulsations of the outer flow. These properties are confirmed by the results of experimental studies [1–4].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 83–87, September–October, 1973.  相似文献   

4.
Results of measurements of the pulsation characteristics of a turbulent boundary layer on a flat penetrable plate, in a range of variation of the parameters of in-blow from 0 to 20, are presented. It is shown that for supercritical in-blows close to the surface there exists a zone in which the energy spectra of velocity pulsations do not vary as the distance from the surface increases, and they differ from the spectra in the core of the boundary layer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 115–119, May–June, 1973.  相似文献   

5.
The Kármán momentum equation and very simple scaling arguments relating to the profiles of the turbulent tangential stresses are used to construct a self-similar reverse flow of an incompressible fluid that, depending on the values of the empirical constants occurring in it, can be realized either behind the separation point of a turbulent boundary layer or in front of its point of reattachment. The empirical constants are determined by means of several independent experimental studies on turbulent separating flows of liquids and gases at subsonic and supersonic velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. A, pp. 173–177, July–August, 1988.  相似文献   

6.
O. B. Larin 《Fluid Dynamics》1979,14(6):838-844
The ignition of hydrogen blown into a turbulent supersonic boundary layer on a flat plate is investigated numerically. It is assumed that the mixture consists of six chemically active components H, O, OH, H2O, O2, H2 and inert nitrogen N2. The boundary layer is divided into outer and inner regions, for which different expressions for the coefficients of turbulent transport are used. The influence of pulsations on the rates of the chemical reactions, and also the back reaction of the chemical processes on the mechanism of turbulent transfer are not taken into account. The surface of the plate is assumed to be absolutely catalytic with respect to the recombination reactions of the H and O atoms. The influence of the blowing intensity, the Mach number in the outer flow, and the pressure on the ignition delay is analyzed. The possibility of effective porous cooling of the surface when there is combustion in the boundary layer is demonstrated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 33–40, November–December, 1979.I thank V. G. Gromov and V. A. Levin for their interest in the work.  相似文献   

7.
A method of calculating the plane turbulent layer behind a step interacting with a free potential flow of incompressible fluid is developed. The method includes consideration of the initial boundary layer and injection (or suction) in the isobaric bottom region. Friction on the wall behind the step is neglected, which corresponds to symmetric quasisteady flow behind the straight edge of a plate. The inviscid flow is represented by the Keldysh-Sedov integral equations; the flow in the wake with a one-parameter velocity profile is represented by three first-order differential equations—the equations of momentum for the wake and motion along its axis and the equation of interaction (through the displacement thickness) of the viscous flow with the external potential flow. The turbulent friction in the wake is given, accurate to the single empirical constant, by the Prandtl equation. The different flow regions — on the plate behind the step, the isobaric bottom region, and the wake region — are joined with the aid of the quasi-one-dimensional momentum equation for viscous flow. The momentum equation for the flow as a whole serves as the closure condition. The obtained integrodifferential system of equations is approximated by a system of nonlinear finite-difference equations, whose solution is obtained on a computer by minimization of the sum of the squares of the discrepancies. The results of the calculations agree satisfactorily with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 17–25, May–June, 1977.We are grateful to V. I. Kuptsov for consultation and help in programming and to Z. A. Donskova who assisted in the calculations and preparation of the paper.  相似文献   

8.
A differential equation of the kinetic-energy balance of turbulence is used in a number of papers to close the equations describing average motion in turbulent flows. On the basis of this relation, a differential equation for turbulent viscosity is obtained herein. Numerical computations are carried out for incompressible non-self-similar turbulent and transition flows in awake, a jet, and a boundary layer; universal constants in the equation for the viscosity are refined. The flow in a wake and boundary layer with high longitudinal pressure gradients is investigated by analytical and numerical methods. Dimensionless criteria determining the nature of the effect of the pressure gradient on the average flow and turbulent viscosity are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 114–127, September–October, 1971.The author is greateful to I. P. Smirnov, S. Yu. Krasheninnikov, and V. B. Kuz'mich for aid in compiling the program for the numerical computations and to L. L. Bychkov for processing the computational results and plotting the graphs.  相似文献   

9.
In [1, 2] turbulence of the external flow was taken into account by specifying the turbulent energy at the external boundary of the boundary layer on integrating the energy-balance equation for the turbulence. In [3] a special correction that allowed the turbulence of the external flow to be taken into account was introduced in determining the mixture path. In [4, 5] the turbulent energy calculated from the energy-balance equation of the turbulence was added to the energy induced by turbulence of the external flow, the energy distribution of the induced turbulence being specified using an empirically selected function. In [6, 7] a method of taking into account the effect of turbulence of the external flow on a layer of mixing and a jet was proposed. In the present work, this method is applied to the boundary layer at a plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 26–31, May–June, 1977.  相似文献   

10.
Existing information about the generation and viscous dissipation of turbulent energy is based, as a rule, on the Laufer test data obtained for fluid flow in circular tubes at two Reynolds numbers (5 · 105 and 5 · 104). Computational dependences are presented herein for the generation and viscous dissipation of turbulent energy, common over the whole stream section and for the whole range of variation of the Reynolds number. The equation of the average energy balance during fluid flow in a circular tube and a flat channel is solved taking account of the equation of motion and the turbulent friction profile obtained by the author [1]. The computational dependences satisfy all the evident boundary conditions, agree with the Laufer test results [2] and yield a well-founded passage to the limit modes of average turbulent motion.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 30–36, November–December, 1973.  相似文献   

11.
The equations of thermal convection in a rotating plane horizontal layer of nonequilibrium turbulent fluid are obtained, the system of equations is linearized and the boundary value problem is formulated. Some general properties of the perturbation spectrum are found and a solution, which includes the classical solution in the absence of turbulence as a limiting case, is obtained.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 62–70, November–December, 1994.  相似文献   

12.
The recovery factor on a permeable surface has been experimentally determined at various rates of injection of air into a supersonic turbulent boundary layer. On the basis of an analysis of the solutions of the integral momentum and energy equations for a turbulent boundary layer an expression is obtained for the recovery factor. The recovery factor in the region of a protective gas surface film in a supersonic external flow has been experimentally determined.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 131–136, March–April, 1972.  相似文献   

13.
In computations involving heat transfer in turbulent flow past bodies it is necessary to assume turbulent Prandtl number distribution across the boundary layer. A review and comparison of results obtained by different authors are given, e.g., in [1–5]. Unfortunately, the existing data are so contradictory that, at present, it does not appear to be possible to establish reliably a function that determines turbulent Prandtl number distribution across the boundary layer. The absence of sufficiently reliable and general results on the distribution of turbulent Prandtl number led to the result that in the majority of studies conducted in earlier years its value was assumed a constant and either close to or equal to one. The effect of turbulent Prandtl number on the intensity of heat transfer from a flat plate is numerically investigated in the present paper. The thermal, turbulent boundary layer equation is integrated for this purpose at different values of turbulent Prandtl number and results are compared with experimental data. Results from [6], where the thermal boundary layer was numerically integrated with Prt=1 and compared with experimental data, were used for comparison in the present paper. The same numerical integration procedure as in [6] was used here.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 81–85, July–August, 1984.  相似文献   

14.
The use of the generalized similarity method for calculating laminar boundary layers has been fully justified (see [1, §113, 114, 148]). The replacement of the partial differential equations by ordinary differential equations, their universality and the possibility of physically interpreting the solutions in the first, parametric stage of the calculations, which distinguish the generalized similarity method from direct numerical integration methods, are preserved in the case of a turbulent boundary layer also. A comparison of the calculated and experimental velocity profiles in the inner zone of the turbulent boundary layer suggests that the generalized similarity method could be used for calculating the turbulent layer as a whole.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 25–34, September–October, 1990.  相似文献   

15.
The equations of the turbulent boundary layer contain a small parameter — the reciprocal of the Reynolds number, which makes it possible to carry out an asymptotic analysis of the solutions with respect to that small parameter. Such analyses have been the subject of a number of studies [1–5]. In [2, 5] for closing the momentum equation algebraic Prandtl and turbulent viscosity models were used. In [1, 3, 4] the structure of the boundary layer was analyzed in general form without formulating specific closing hypothesis but under additional assumptions concerning the nature of the asymptotic behavior of the limiting solutions in the various regions.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 106–117, May-June, 1993.  相似文献   

16.
The axisymmetric far turbulent wake in a perfect gas is considered. An integral method of computing both the first moments of the hydrodynamic fields and the turbulence intensity and the root-mean-square values of the enthalpy pulsations is proposed in Section 1. (The whole system of equations is closed by using semiempirical hypotheses.) Under the assumption of no inviscid gradients, an approximate analytical solution of the problem is obtained in Section 2, and asymptotic expressions (as x) are presented for all the designated quantities. Numerical values of the experimental constants are estimated in Section 3 by comparing the computation with known experimental results.Leningrad. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 6, pp. 32–40, November–December, 1972.  相似文献   

17.
Analysis of numerous experimental data reveals an influence of large vortices on the structure and characteristic parameters of flows. An approximate theory is proposed for describing the effect of large vortices on the pressure pulsations, the profiles of the pulsation velocities, the turbulence energy, and the velocity correlations (turbulence friction stresses). Large vortices are shown to have a long-range influence in that they induce pulsations of the pressure and the velocity at large distances, in particular in regions where transverse velocity gradients are absent (jet boundaries, symmetry axis, core of the initial section of a jet, etc.). When the theory is applied to the calculation of the turbulent characteristics of a mixing layer, a planar jet, a combustion jet, and a boundary layer on a flat surface, it is satisfactorily confirmed by the experimental data of a number of authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, p. 10–20, September–October, 1979.I thank A. B. Vatazhin, A. S. Ginevskii, T. A. Girshovich, and A. N. Sekundov for helpful advice.  相似文献   

18.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

19.
The study of the characteristics of the turbulence in the boundary layer and in free jets is one of the most important problems of the aerodynamics of viscous fluids. The accumulation of information on the pulsation characteristics of jet flows and the establishment of the corresponding governing laws may serve to verify the basic hypotheses of the semiempirical theories of turbulence, and also for the development of more advanced computational methods. In many cases the measurement of the pulsation characteristics of turbulent jets is of practical interest.The studies made up till now [1–5] of the microstructure of turbulent flow in the primary region of submerged axisymmetric jets have made it possible to obtain several interesting results. In particular, in addition to the average velocity profiles, hot-wire anemometric equipment has been used to measure the normal and tangential Reynolds stresses and also the intermittency factor in cross sections of the jet, the distribution of the intensity of the longitudinal and lateral velocity pulsations along the axis, the correlation coefficients and the corresponding integral turbulence scales, etc. These measurements have made it possible to draw several important conclusions on the mechanism of turbulent exchange, on the order of the terms omitted in the equation of motion, and on the semiempirical theories of turbulence [6–9].The common deficiency of the studies mentioned above is that near the boundary of a submerged jet, where the average velocity is practically equal to zero, the intensity of the pulsations is so great that it makes the reliability of the results obtained by means of the hotwire anemometer questionable. In this connection Townsend [6] indicated the advisability of studying the microstructure of a turbulent jet issuing into a low-velocity ambient flow.The present study had as its objective the investigation of the microstructure of the primary region of an axisymmetric jet in a wake flow over quite a broad range of the flow ratio parameter m=u/u0;here u0 is the average velocity at the nozzle exit, u is the velocity of the ambient stream. For various values of the parameter m in the primary region of the jet measurements were made of the profiles of the three components of the pulsation velocity and the Reynolds shear stresses, and also the values of the average velocity and two components of the pulsation velocity at a large number of points on the jet axis. The measured profiles of the Reynolds shear stresses were compared with the corresponding profiles calculated on the basis of the boundary layer equations from the experimentally determined average velocity profiles. For two values of the parameter m, in one of the sections of the jet measurements were made of the correlation coefficients of the longitudinal components of the pulsation velocity and the variation across the jet of the integral turbulence scale was determined.The results obtained give an idea of the influence of the parameter m on the characteristics of the turbulent jet in an ambient stream.  相似文献   

20.
A system of differential equations is proposed to describe turbulent flows of incompressible fluid boundary layer type with constant thermophysical characteristics A turbulent temperature conductivity is introduced which is expressed in terms of the energy and scale of turbulence, the dimensionless gradients of the mean velocity and turbulence energy, and the dimensionless distance, to the surface being streamlined. This system is integrated on an electronc computer by the mesh method for the flow in a flat-plate boundary layer with different Prandtl numbers (0.2P100) For air (P=0.71) the system is integrated for nonzero values of the transverse mean velocity component on the streamlined surface (0vW/U0.0045).Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 18–24, July–August, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号