首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
A substantial amount of experimental and numerical evidence has shown that the Derjaguin-Landau-Verwey-Overbeek theory is not suitable for describing those colloidal solutions that contain multivalent counterions. Toward improved understanding of such solutions, the authors report Monte Carlo calculations wherein, following Rouzina and Bloomfield, they postulate that, in the absence of van der Waals forces, the overall force between two isolated charged colloidal particles in electrolyte solutions is determined by a dimensionless parameter Gamma=z(2)l(B)/a, which measures the electrostatic repulsion between counterions adsorbed on the macroion surface, where z = counterion valence, l(B)=Bjerrum length, and a = average separation between counterions on the macroion surface calculated as if the macroion were fully neutralized. The authors find, first, that the maximum repulsion between like-charged macroions occurs at Gamma approximately 0.5 and, second, that onset of attraction occurs at Gamma approximately 1.8, essentially independent of the valence and concentration of the surrounding electrolyte. These observations might provide new understanding of interactions between electrostatic double layers and perhaps offer explanations for some electrostatic phenomena related to interactions between DNA molecules or proteins.  相似文献   

2.
The adsorption of charged colloids (macroions) onto an oppositely charged planar substrate is investigated theoretically. Taking properly into account the finite size of the macroions, unusual behaviors are reported. It is found that the role of the co-ions (the little salt-ions carrying the same sign of charge as that of the substrate) is crucial in understanding the mechanisms involved in the process of macroion adsorption. In particular, the co-ions can accumulate near the substrate's surface and lead to a counterintuitive surface charge amplification.  相似文献   

3.
The effect of replacing the conventional uniform macroion surface charge density with discrete macroion charge distributions on structural properties of aqueous solutions of like-charged macroions has been investigated by Monte Carlo simulations. Two discrete charge distributions have been considered: point charges localized on the macroion surface and finite-sized charges protruding into the solution. Both discrete charge distributions have been examined with fixed and mobile macroion charges. Different boundary conditions have been applied to examine various properties. With point charges localized on the macroion surface, counterions become stronger accumulated to the macroion and the effect increases with counterion valence. As a consequence, with mono- and divalent counterions the potential of mean force between two macroions becomes less repulsive and with trivalent counterions more attractive. With protruding charges, the excluded volume effect dominates over the increased correlation ability; hence the counterions are less accumulated near the macroions and the potential of mean force between two macroions becomes more repulsive/less attractive.  相似文献   

4.
In order to be used in versatile DNA delivery systems, novel cationic lipids were synthesized. The head groups of the new compounds represented by monoamines or oligoamines can be charged or uncharged depending on the environmental pH. Since their pK values are unknown, the protonation properties of these lipids have been studied in a wide pH range. In our experiments, the amphiphilic molecules were organized as a Langmuir monolayer at the air-water interface. Total reflection X-ray fluorescence (TRXF) was used to determine the 2D concentration of bromide counterions bound to a positively charged (protonated) Langmuir monolayer. The protonation rate of the novel cationic lipids was estimated by comparing the fluorescence intensity with that of dioctadecyldimethylammonium bromide monolayers as a reference. TRXF investigations were supplemented with results of film-balance measurements, grazing incidence X-ray diffraction, and X-ray reflectivity data. The results obtained display that the monolayers of all studied compounds are completely uncharged at pH values above 10. In the investigated pH region, the highest protonation rate of the monolayers is observed at pH 3. The influence of the monolayer packing density on the protonation properties is clearly shown.  相似文献   

5.
Using integral equation theory of liquids to a binary mixed fluid lipid membrane, the authors study the membrane-mediated interactions between binding macroions and the redistribution of neutral and charged lipids due to the macroions. The authors find that when the concentration of binding macroions is infinitely dilute, the main contribution to the attractive potential between macroions is the line tension between neutral and charged lipids of the membrane. As the relative concentration of charged lipids is increased, the authors observe a repulsive-attractive-repulsive potential transition due to the competition between the line tension of mixed lipids and screened electrostatic macroion-macroion interactions. For the finite concentration of macroions, the main feature of the attraction is similar to the infinite-diluted case. However, the corresponding line tension of binary lipids under single macroion is lowered with the formation of multicomplexes by the charged lipids and the macroions, and the maximum of attractive potential will shift toward the higher values of charged lipid concentration.  相似文献   

6.
Using molecular dynamics computer simulations we investigate structural and dynamic (diffusion) properties of charged colloidal suspension confined to narrow slit pores with structureless, uncharged walls. The system is modeled on an effective level involving only the macroions, which interact via a combination of a soft-sphere and a screened Coulomb potential. The aim of our study is to identify the role of the range of the macroion-macroion interaction controlled by the inverse Debye screening length, kappa. We also compare to bulk properties at the same chemical potential as determined in parallel grand canonical Monte Carlo simulations. Our results reveal a significant influence of the interaction range which competes, however, with the influence of density. At liquidlike densities a decrease of range yields a decreasing mobility (and a corresponding enhancement of local structure) in the bulk system, whereas the reverse effect occurs in narrow slits with thickness of a few particle diameter. These differences can be traced back to the confinement-induced, and kappa-dependent, reduction of overall density compared to the bulk reservoir. We also show that an increase of kappa softens the oscillations in the normal pressure as function of the wall separation, which is consistent with experimental observations concerning the influence of addition of salt.  相似文献   

7.
The adsorption of surfactants, which form insoluble monolayers on an aqueous substrate, onto a single crystal gold electrode have been described. Adsorption of this class of surfactants have been characterized using a combination of electrochemistry and Langmuir-Blodgett techniques. We have developed a technique to simultaneously measure the film pressure at the gas-solution (GS) interface and the film pressure of the surfactants that spread to the metal-solution (MS) interface. We have shown that surfactants such as octadecanol and stearic acid, which interact weakly with the metal surface, adsorb at an uncharged MS interface (at the potential of zero charge) and progressively desorb when the electrode surface is charged negatively. The electrode potential (charge density at the metal surface) influences the transfer of the surfactant from the GS interface to the MS interface. The transfer ratio is 1:1 at an uncharged MS interface, and is progressively reduced to zero when the MS interface is charged. We have employed 12-(9-anthroloxy) stearic acid, a surfactant dye molecule, to study the mechanism of potential induced desorption and adsorption of the film of insoluble molecules. With the help of electroreflectance spectroscopy and light scattering measurements, we have shown that if desorbed, the surfactant molecules form micelles (flakes or vesicles) that are trapped under the electrode surface. The micelles spontaneously spread back onto the electrode surface when the charge density at the metal approaches zero. The repeatable desorption and readsorption involve micellisation of the film at negative potentials and spontaneous spreading of the micelles to reform the monolayer at potentials close to pzc.  相似文献   

8.
The surface tension and pH of aqueous solutions of three hydrochloric acid (HCl) - uncharged anesthetic (mepivacaine (MC), bupibacaine (BC) and dibucaine (DC)) mixtures were measured as a function of total molality and composition of local anesthetic in order to investigate the competitive surface-adsorption of uncharged and charged local anesthetics. The behavior of the surface tension versus total molality and pH versus total molality curves remarkably changed at the composition corresponding to an equimolar mixture. The pH measurements showed that uncharged and charged forms coexisted only at compositions more than the equimolar mixture. The partitioning quantities of respective uncharged and charged anesthetics into the surface-adsorbed film were estimated from their surface densities calculated thermodynamically. The greater quantity of uncharged anesthetics existed in the adsorbed film at the coexisting composition, that is, the uncharged anesthetics adsorbed more preferentially than charged ones. The relative ease with which uncharged anesthetics transferred into the surface-adsorbed film was proportional to the hydrophobicities and well correlated the anesthetic potencies. At compositions in the vicinity of physiological pH (ca. 7.4), the bulk solution is more abundant in charged anesthetics than uncharged ones, whereas the uncharged molecules is conversely more abundant in the surface region. The present results clearly imply that the surface-active molecule of local anesthetic in the physiological pH is the uncharged form and the partitioning is greatly dependent on the hydrophobicity among the anesthetics.  相似文献   

9.
We investigate the structuring of charged spherical nanoparticles and micelles (i.e., "macroions") between two surfaces as a function of bulk macroion concentration. Structuring is deduced from measured force profiles between a silica particle and a silica plate in the presence of an aqueous macroion (Ludox silica nanoparticle or sodium dodecyl sulfate micelle) solution, obtained with an atomic force microscope. We observe oscillatory force profiles that decay with separation. We find that the wavelength of the force profiles scales with the bulk number density as rho(-)(1/3), rather than with the effective macroion size. Only at very high silica nanoparticle concentration (above 10 vol %) in a low ionic strength solution does the wavelength become smaller than that predicted by the simple rho(-)(1/3) scaling; however, the original scaling is recovered upon the addition of a small amount of electrolyte. A comparison between the measured wavelength and the predicted spacing between the macroions in the bulk shows that the two variables differ in both magnitude and bulk density scaling. This finding suggests that confined macroions are more ordered than those in the bulk and the nature of this ordering is maintained over a relatively wide range of bulk concentration.  相似文献   

10.
We investigate polyelectrolyte bridging interactions mediated by charged, flexible, polyelectrolyte chains between fixed cylindrical macroions of opposite charge in a two-dimensional hexagonal crystalline array. We show that in the asymptotic regime of small macroion density, the polyelectrolyte-mediated attraction is long range, falling off approximately linearly with the macroion array density. We investigate the polyelectrolyte free energy as a function of the macroion density and derive several analytic limiting laws valid in different regimes of the parameter space.  相似文献   

11.
Charged lipid membranes commonly consist of a mixture of charged and zwitterionic lipids. We suggest a model that characterizes the influence of the dipolar nature of the zwitterionic lipid species on the electrostatic adsorption of macroions onto mixed membranes in the fluid state. The model is based on Poisson-Boltzmann theory which we have modified so as to account for the dipolar character of the zwitterionic lipids. In addition the membrane lipids are allowed to adjust their lateral distribution upon macroion adsorption. We consider and compare two experimentally relevant scenarios: cationic macroions adsorbed onto anionic membranes and anionic macroions adsorbed onto cationic membranes. We show that in the former case the adsorption strength is slightly weakened by the presence of the headgroup dipoles of the zwitterionic lipids. Here, macroion-induced lipid demixing is more pronounced and the lipid headgroups tilt away from a cationic macroion upon adsorption. In contrast, for the adsorption of anionic macroions onto a cationic membrane the zwitterionic lipids strongly participate in the electrostatic interaction between membrane and macroion, thus enhancing the adsorption strength significantly (we predict up to 20%). Consistent with that we find less lateral demixing of the charged lipids and a reorientation of the dipoles of the zwitterionic headgroups towards the anionic macroions. Our results may be of importance to understand the differences in the electrostatic adsorption of proteins/peptides onto cellular membranes versus complex formation between cationic membranes and DNA.  相似文献   

12.
This study focuses on the design of chemically regulated surfaces that allow for reversible control of the interactions between biological matter (cells and proteins) and planar substrates. As a tunable interlayer, we use a monolayer of a near-monodisperse poly[2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate] (PDMAEMA-PMMA) diblock copolymer. Owing to the relatively large fraction (50%) of the hydrophobic PMMA block, this copolymer forms a stable Langmuir monolayer at the air/water interface. Both in situ and ex situ film balance experiments suggest that the hydrophilic PDMAEMA block adsorbs to the air/water interface in its uncharged state (pH 8.5), but stretches into the subphase in its charged state (pH 5.5). Optimization of the preparation protocols enables us to fabricate stable, homogeneous diblock copolymer films on hydrophobized substrates via Langmuir-Schaefer transfer at well-defined lateral chain densities. Ellipsometry and X-ray reflectivity studies of the transferred films confirm that the film thickness can be systematically regulated by the lateral chain densities. The transferred copolymer films remain stable in water for about a week, suggesting that they are promising materials for the creation of pH-controlled solid substrates for the support of biological matter such as proteins and cells.  相似文献   

13.
Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion.  相似文献   

14.
Sum-frequency vibrational spectroscopy, with the help of surface pressure-area (π-A) isotherm, was used to study lipid Langmuir monolayers composed of molecules with positively and negatively charged headgroups as well as a 1:1 neutral mixture of the two. The spectral profiles of the CH(x) stretch vibrations are similar for all monolayers in the liquid-condensed (LC) phase. They suggest a monolayer structure of closely packed alkyl chains that are nearly all-trans and well oriented along the surface normal. In the liquid-expanded (LE) phase, the spectra of all monolayers appear characteristic of loosely packed chains with significant gauche defects. The OH stretch spectra of interfacial water for both positively and negatively charged monolayers are significantly enhanced in comparison with a neutral water interface, but the phase measurement of SFVS indicates that OH in the two cases points toward the bulk and the interface, respectively. The enhancement results mainly from surface-field-induced polar ordering of interfacial water molecules. For a charge-neutral monolayer composed of an equal number of positively and negatively charged lipid molecules, no such enhancement is observed. This mixed monolayer exhibits a wide range of LC/LE coexistence region extended to very low surface pressure and its CH(x) spectral profile in the coexistence region resembles that of the LC phase. This result suggests that in the LC/LE coexistence region, the mixed monolayer consists of coexisting LC and LE patches in which oppositely charged lipid molecules are homogeneously mixed and dispersed.  相似文献   

15.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

16.
The interaction of amorphous colloidal silica (SiO(2)) nanoparticles of well-defined sizes with a dioleoyl phosphatidylcholine (DOPC) monolayer on a mercury (Hg) film electrode has been investigated. It was shown using electrochemical methods and microcalorimetry that particles interact with the monolayer, and the electrochemical data shows that the extent of interaction is inversely proportional to the particle size. Scanning electron microscopy (SEM) images of the electrode-supported monolayers following exposure to the particles shows that the nanoparticles bind to the DOPC monolayer irrespective of their size, forming a particle monolayer on the DOPC surface. A one-parameter model was developed to describe the electrochemical results where the fitted parameter is an interfacial layer thickness (3.2 nm). The model is based on the adsorptive interactions operating within this interfacial layer that are independent of the solution pH and solution ionic strength. The evidence implies that the most significant forces determining the interactions are van der Waals in character.  相似文献   

17.
The interaction between DNA and positively charged dioctadecyldimethylammonium bromide (DODAB) and DODAB/disteroylphosphatidylcholine (DSPC) monolayers at the air-aqueous interface was studied by a combination of the surface film balance and Brewster angle microscopy. In presence of DNA, the Pi-A isotherm of the cationic monolayer shifts to larger mean molecular areas due to the electrostatic interaction with DNA while the typical liquid expanded-liquid condensed phase transition for DODAB monolayers disappear and the monolayer remains to be in the liquid expanded phase. Furthermore, the morphology of the film dramatically changes, where the large dendritic-like condensed aggregates observed for DODAB monolayers vanish. The charge density of the monolayer was varied by using mixed monolayers with the zwitterionic DSPC and no large effect was observed on the interaction with DNA. By modeling the electrostatic interactions with the linearized Poisson-Boltzmann equation using the finite-element method and taking into account the assumption in the dielectric constants of the system, it was possible to corroborate the expansion of the cationic monolayer upon interaction with DNA as well as the fact that DNA does not seem to penetrate into the monolayer.  相似文献   

18.
采用流动注射-电化学-表面等离子体激元共振联用技术研究了11-二茂铁基十一烷基-1-硫醇自组装膜在氧化还原过程中的构型变化.结果表明,二茂铁硫醇在氧化过程中,分子发生了两种结构变化:远离电极表面,烷基链与电极表面的夹角增大;分子上两个平行的戊基环绕着二茂铁-碳轴发生旋转.  相似文献   

19.
Aliphatic alcohols and aldehydes were reacted with the Si(111)-H surface to form Si-O-C interfacial bonds from dilute solution by using ultraviolet light. The resulting monolayers were characterized by using transmission infrared spectroscopy, spectroscopic ellipsometry, and contact angle measurements. The effect of different solvents on monolayer quality is presented. The best monolayers were formed from CH(2)Cl(2). The optimized monolayers were thoroughly characterized to determine the film structure and monolayer stability. The UV-promoted, alcohol-functionalized, and aldehyde-functionalized monolayers are of comparable quality to those previously prepared by other means. Although both molecules are tethered through a Si-O-C bond, the film reactivity is distinctly different with the aldehyde films being more chemically resistant. The differences in chemical reactivity, vibrational spectra, hydrophobicity, and ellipsometric thickness between the alcohol and aldehyde monolayers are attributed to a difference in molecular coverage and monolayer formation.  相似文献   

20.
Dipalmitoyl phosphatidyl glycerol (DPPG) as Langmuir monolayers at the air/water interface was investigated by means of surface pressure measurements in addition to Brewster angle microscopy (BAM) during film compression/expansion. A characteristic phase transition region appeared in the course of surface pressure-area (pi-A) isotherms for monolayers spread on alkaline water or buffer subphase, while on neutral or acidic water the plateau region was absent. This phase transition region was attributed to the ionization of DPPG monolayer. It has been postulated that the ionization of the phosphatidyl glycerol group leads to its increased solvation, which probably provokes both a change in the orientation of the polar group and its deeper penetration into bulk phase. Film compression along the transition region provokes the dehydration of polar groups and subsequent change of their conformation, thus causing the DPPG molecules to emerge up to the interface. Quantitative Brewster angle microscopy (BAM) measurements revealed that along the liquid-expanded to liquid-condensed phase transition the thickness of the ionized DPPG monolayer increases by 4.2 A as a result of the conformational changes of the ionized polar groups, which tend to emerge from the bulk subphase up to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号