首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantization of the electromagnetic interactions of scalar charged particles is considered within the stochastic Langevin and Schwinger-Dyson equations with nonlocal white noise. Fulfillment of the gauge-invariant condition in such a scheme is studied in detail. Matrix elements of the vacuum polarization and self-energy diagrams of the scalar electrodynamics are calculated explicitly, which reduce to usual nonlocal scalar electrodynamic results.  相似文献   

2.
To the best of our knowledge, all nonlinearities in the known nonlinear integrable systems are either local or nonlocal. A natural problem is whether there exist some nonlinear integrable systems with both local and nonlocal nonlinearities, and how to solve this kinds of spectral nonlinear integrable systems with both local and nonlocal nonlinearities. Recently, some novel mixed local-nonlocal vector Schrödinger equations are presented, which are different from the single local and nonlocal coupled Schrödinger equation. We investigate the Darboux transformation of mixed local-nonlocal vector Schrödinger equations with a spectral problem. Starting from a special Lax pairs, the mixed localnonlocal vector Schrödinger equations are constructed. We obtain the one- and two- and N-soliton solution formulas of the mixed local-nonlocal vector Schrödinger equations with N-fold Darboux transformation. Based on the obtained solutions, the propagation and interaction structures of these multi-solitons are shown, the evolution structures of the one-solitons are exhibited, the overtaking elastic interactions among the two-breather solitons are considered. We find that unlike the local and nonlocal cases, the mixed local-nonlocal vector Schrödinger equations have some novel results. The results in this paper might be helpful for understanding some physical phenomena described in plasmas.  相似文献   

3.
The purpose of this review article is to demonstrate via a few simple models the mechanism for a very general, universal instability - the Arnold diffusion—which occurs in the oscillating systems having more than two degrees of freedom. A peculiar feature of this instability results in an irregular, or stochastic, motion of the system as if the latter were influenced by a random perturbation even though, in fact, the motion is governed by purely dynamical equations. The instability takes place generally for very special initial conditions (inside the so-called stochastic layers) which are, however, everywhere dense in the phase space of the systsm.The basic and simplest one of the models considered is that of a pendulum under an external periodic perturbation. This model represents the behavior of nonlinear oscillations near a resonance, including the phenomenon of the stochastic instability within the stochastic layer of resonance. All models are treated both analytically and numerically. Some general regulations concerning the stochastic instability are presented, including a general, semi-quantitative method-the overlap criterion—to estimate the conditions for this stochastic instability as well as its main characteristics.  相似文献   

4.
By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection–reaction equation. By using a Fourier–Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.  相似文献   

5.
A new elastic nonlocal stress model and analytical solutions are developed for torsional dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches which directly substitute the nonlocal stress into the equations of motion, this new model begins with the derivation of strain energy using the nonlocal stress and by considering the nonlinear history of straining. The variational principle is applied to derive an infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which contain a nonlocal nanoscale parameter. Subsequently, free torsional vibration of nanorods/nanotubes and axially moving nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of reduced vibration frequency, the solutions indicate that natural frequency for free torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving nanorods/nanotubes is derived and it is concluded that this critical speed is significantly influenced by the nonlocal nanoscale.  相似文献   

6.
We give a new estimate on Stieltjes integrals of Hölder continuous functions and use it to prove an existence-uniqueness theorem for solutions of ordinary differential equations with Hölder continuous forcing. We construct stochastic integrals with respect to fractional Brownian motion, and establish sufficient conditions for its existence. We prove that stochastic differential equations with fractional Brownian motion have a unique solution with probability 1 in certain classes of Hölder-continuous functions. We give tail estimates of the maximum of stochastic integrals from tail estimates of the Hölder coefficient of fractional Brownian motion. In addition we apply the techniques used for ordinary Brownian motion to construct stochastic integrals of deterministic functions with respect to fractional Brownian motion and give tail estimates of its maximum.  相似文献   

7.
An improved quantum model for exciton–phonon dynamics in an α-helix is investigated taking into account the interspine coupling and the influence of power-law long-range exciton–exciton interactions. Having constructed the model Hamiltonian, we derive the lattice equations and employ the Fourier transforms to go in continuum space showing that the long-range interactions (LRI) lead to a nonlocal integral term in the equations of motion. Indeed, the non-locality originating from the LRI results in the dynamic equations with space derivatives of fractional order. New theoretical frameworks are derived, such that: fractional generalization of coupled Zakharov equations, coupled nonlinear fractional Schrödinger equations, coupled fractional Ginzburg–Landau equations, coupled Hilbert–Zakharov equations, coupled nonlinear Hilbert–Ginzburg–Landau equations, coupled nonlinear Schrödinger equations and coupled nonlinear Hilbert–Schrödinger equations. Through the F-expansion method, we derive a set of exact Jacobian solutions of coupled nonlinear Schrödinger equations. These solutions include Jacobian periodic solutions as well as bright and dark soliton which are important in the process of energy transport in the molecule. We also discuss of the impact of LRI on the energy transport in the molecule.  相似文献   

8.
General N-solitons in three recently-proposed nonlocal nonlinear Schrödinger equations are presented. These nonlocal equations include the reverse-space, reverse-time, and reverse-space–time nonlinear Schrödinger equations, which are nonlocal reductions of the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy. It is shown that general N-solitons in these different equations can be derived from the same Riemann–Hilbert solutions of the AKNS hierarchy, except that symmetry relations on the scattering data are different for these equations. This Riemann–Hilbert framework allows us to identify new types of solitons with novel eigenvalue configurations in the spectral plane. Dynamics of N-solitons in these equations is also explored. In all the three nonlocal equations, their solutions often collapse repeatedly, but can remain bounded or nonsingular for wide ranges of soliton parameters as well. In addition, it is found that multi-solitons can behave very differently from fundamental solitons and may not correspond to a nonlinear superposition of fundamental solitons.  相似文献   

9.
A mode-coupling formalism is developed for multicomponent systems of particles performing diffusive motion in a uniform host medium. The mode-coupling equations are derived from a set of nonlinear fluctuating diffusion equations by expanding the concentration-dependent diffusion constants about their equilibrium values. From the mode-coupling equations the dominant long time behavior of current-current and super-Burnett correlation functions is derived. As specific applications I consider the long time behaviors of these correlation functions for collective and tracer diffusion in a one-component lattice gas with particle-conserving stochastic dynamics. The results agree with those from exactly solvable models and computer simulations.  相似文献   

10.
《Current Applied Physics》2014,14(5):814-832
In the present paper, the thermo-electro-mechanical vibration characteristics of a piezoelectric-nanoplate system (PNPS) embedded in a polymer matrix are investigated. The system is subjected to a non-uniform voltage distribution. The voltage distribution and in-plane preloads are very important in the resonance mode of smart composite nanostructures using PNPS. Small scale effects are taken into consideration using the nonlocal continuum mechanics. Hamilton's principle is employed to derive the nonlocal equations of motion. The governing equations are solved for various boundary conditions by using differential quadrature method (DQM). To verify the accuracy of the present results, a closed-form solution is also derived for the natural frequencies of simply supported PNPSs. The results of DQM are compared with those of exact solution and an excellent agreement is found. Finally, the effects of initial preload, temperature change, boundary conditions, aspect ratio, length-to-thickness ratio, nonlocal and non-uniform parameters on the vibration characteristics of PNPSs are studied. It is shown that the natural frequencies are quite sensitive to the non-uniform and nonlocal parameters.  相似文献   

11.
The hierarchy of integrable nonlinear equations associated with the quadratic bundle is considered. The expressions for the solution of linearization of these equations and their conservation law in the terms of solutions of corresponding Lax pairs are found. It is shown for the first member of the hierarchy that the conservation law is connected with the solution of linearized equation due to the Noether's theorem. The local hierarchy and three nonlocal ones of the infinitesimal symmetries and conservation laws explicitly expressed through the variables of the nonlinear equations are derived.  相似文献   

12.
A square-root-operator formalism is developed for quantum systems described with nonrelativistic and relativistic equations of motion. Spectral representation for Green's functions are designed for particles with spin 0, with the implication of its generalization to other spin values. Nonlocal operators suggest that a duality exists between physical particles and dual partners, which are tachyonic mathematical particles. It is shown that nonlocal operators result naturally from square-root operators, with the implication that microcausality holds only asymptotically. Applications help enlighten the formalism in order to envisage realistic situations with Schrödinger equations, Higgs fields, vacuum fluctuations, extra-dimensional methods in the potential theory, and electromagnetic interactions of extended charges and their consequences. It turns out that the innermost structure of these extended charges is associated with nonlocal photon propagators. It is shown that the propagator arisen from the charged torus potential consists of two different parts: a nonlocal photon propagator and a propagator of neutrino-like particles, which is described by square-root-operator equation. We examine the potential of the torus and its propagator as the appearance of superfields in terms of the photon and the massless fermion (photino).  相似文献   

13.
This paper deals with stochastic spectral methods for uncertainty propagation and quantification in nonlinear hyperbolic systems of conservation laws. We consider problems with parametric uncertainty in initial conditions and model coefficients, whose solutions exhibit discontinuities in the spatial as well as in the stochastic variables. The stochastic spectral method relies on multi-resolution schemes where the stochastic domain is discretized using tensor-product stochastic elements supporting local polynomial bases. A Galerkin projection is used to derive a system of deterministic equations for the stochastic modes of the solution. Hyperbolicity of the resulting Galerkin system is analyzed. A finite volume scheme with a Roe-type solver is used for discretization of the spatial and time variables. An original technique is introduced for the fast evaluation of approximate upwind matrices, which is particularly well adapted to local polynomial bases. Efficiency and robustness of the overall method are assessed on the Burgers and Euler equations with shocks.  相似文献   

14.
A formalism is developed whereby balance laws are directly obtained from nonlocal (integrodifferential) linear second-order equations of motion for systems described by several dependent variables. These laws augment the equations of motion as further useful information about the physical system and, under certain conditions, are shown to reduce to conservation laws. The formalism can be applied to physical systems whose equations of motion may be relativistic and either classical or quantum. It is shown to facilitate obtaining global conservation laws for quantities which include energy and momentum. Applications of the formalism are given for a nonlocal Schrödinger equation and for a system of local relativistic equations of motion describing particles of arbitrary integral spin.  相似文献   

15.
介绍了蒙特卡罗方法的基本原理以及随机数的产生方法。基于蒙特卡罗方法的思想,结合有限差分方法,建立了求解微分方程边值问题的随机概率模型,并以第一类边界条件的拉普拉斯方程和一个给定初值及边界条件的非稳态热传导方程为数值算例,研究了蒙特卡罗方法在求解微分方程边值问题中的应用。结果表明:利用蒙特卡罗方法,不仅可以有效解决给定边界条件的微分方程,对于给定初值条件的微分方程,也可以从时域有限差分方程出发,采用蒙特卡罗方法进行求解。数值模拟和对误差的理论分析均表明,增加蒙特卡罗试验中的模拟粒子点数,可以提高计算结果的精度。  相似文献   

16.
The harmonic balance (HB) method as an analytical approach is widely used for nonlinear oscillators, in which the initial conditions are generally simplified by setting velocity or displacement to be zero. Based on HB, we establish a new theory to address nonlinear conservative systems with arbitrary initial conditions, and deduce a set of over-determined algebraic equations. Since these deduced algebraic equations are not solved directly, a minimization problem is constructed instead and an iterative algorithm is employed to seek the minimization point. Taking Duffing and Duffing-harmonic equations as numerical examples, we find that these attained solutions are not only with high degree of accuracy, but also uniformly valid in the whole solution domain.  相似文献   

17.
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These nonlocal models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but also those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.  相似文献   

18.
Stress-strain relation in Eringen's nonlocal elasticity theory was originally formulated within the framework of an integral model. Due to difficulty of working with that integral model, the differential model of nonlocal constitutive equation is widely used for nanostructures. However, paradoxical results may be obtained by the differential model for some boundary and loading conditions. Presented in this article is a finite element analysis of Timoshenko nano-beams based on the integral model of nonlocal continuum theory without employing any simplification in the model. The entire procedure of deriving equations of motion is carried out in the matrix form of representation, and hence, they can be easily used in the finite element analysis. For comparison purpose, the differential counterparts of equations are also derived. To study the outcome of analysis based on the integral and differential models, some case studies are presented in which the influences of boundary conditions, nonlocal length scale parameter and loading factor are analyzed. It is concluded that, in contrast to the differential model, there is no paradox in the numerical results of developed integral model of nonlocal continuum theory for different situations of problem characteristics. So, resolving the mentioned paradoxes by means of a purely numerical approach based on the original integral form of nonlocal elasticity theory is the major contribution of present study.  相似文献   

19.
李建清  莫元龙 《物理学报》2006,55(8):4117-4122
在同时考虑多信号输入和相对论效应的情况下,利用波导激励理论获得了行波管中慢电磁行波与电子注非线性互作用的全三维自洽工作方程组,包括激发方程、运动方程、能量转化方程、相位演化方程等,适合大部分行波管中慢电磁行波与电子注的非线性互作用过程.利用该理论具体分析了一个宽带螺旋线行波管在多信号输入时的交叉调制,并与实验结果进行了比较,验证了理论和计算的正确性.另外,还模拟了一个相对论盘荷波导行波管中的非线性注波互作用过程. 关键词: 行波管 慢电磁行波 非线性注波互作用 交叉调制  相似文献   

20.
Jun Li  Yong Chen 《理论物理通讯》2020,72(10):105005-52
Solving nonlinear evolution partial differential equations has been a longstanding computational challenge. In this paper, we present a universal paradigm of learning the system and extracting patterns from data generated from experiments. Specifically, this framework approximates the latent solution with a deep neural network, which is trained with the constraint of underlying physical laws usually expressed by some equations. In particular, we test the effectiveness of the approach for the Burgers' equation used as an example of second-order nonlinear evolution equations under different initial and boundary conditions. The results also indicate that for soliton solutions, the model training costs significantly less time than other initial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号