首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许厚谦 《爆炸与冲击》1994,14(4):289-297
建立了用于模拟入射激波后可燃粉尘颗粒点火的一维非定常两相化学反应流模型,该模型考虑了气固两相间的相互作用、粉尘颗粒的加速、加热和化学反应。粉尘颗粒着火前的化学反应用发生在颗粒外表面和内孔表面的非均相反应描述,颗粒内部的温度变化用一含有化学反应源项的非稳态热传导方程来描述,以颗粒外表面温度的突跃上升作为可燃粉尘颗粒点燃的着火条件。我们用该模型和PSIC方法,对由中等强度激波从纯气相传入煤粉-氧气混合物而引起的非定常两相流动现象,包括气固两相间的相互作用、粉尘颗粒的加速、加热以及点火过程进行了数值研究,计算了对应于不同载荷比、马赫数为4~5的入射激波后煤尘颗粒的点火延迟时间,分析了由于可燃粉尘颗粒的存在,入射激波及波后气固两相流动参数的变化规律。数值计算结果与实验数据符合较好。文中建立的模型和所用的基于PSIC算法的数值方法,用最自然的方式描述气固两相流动,即用连续流模型(欧拉方程)描述输运相(气相)的流动,用轨道颗粒模型(拉格朗日方程)描述分散相(颗粒相)的运动。用这种方法模拟含尘介质中激波后颗粒的点火是很有效的,它可以清楚地确定哪一个颗粒群最先着火,它的初始位置以及在整个点火延迟时间内  相似文献   

2.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

3.
The coupled CFD-DEM method with the JKR (Johnson-Kendall-Roberts) model for describing the contact adhesion of dust to filter particles (FPs) is used to simulate the distribution pattern of dust particle deposition in the granular bed filter (GBF) with multi-layer media. The minimum inlet flow velocity must meet the requirement that the contact probability between dust and FPs is in the high contact probability region. The air flow forms vortices on the leeward side of the FPs and changes abruptly at the intersection of different particle size FPs layers. Dust particles form large deposits at the intersection of the first and second layers and the different particle size filter layers. Dual element multilayer GBF can further optimize the bed structure by interlacing filter layers with different particle sizes. Compared with single particle size multi-layer GBF, the bed pressure drop is reduced by 40.24%–50.65% and the dust removal efficiency is increased by 21.93%–55.09%.  相似文献   

4.
N. Thevand  E. Daniel 《Shock Waves》2002,11(4):279-288
The importance of the lift force acting on the dispersed phase in the boundary layer of a laminar gas-particle dilute mixture flow generated by a shock wave is investigated numerically. The particle phase is supposed to form a continuum and is described by an Eulerian approach. The ability of the Eulerian model to simulate particle flows and the importance of the two-way coupling are proven by comparison with experimental data as well as with the numerical results from schemes based on a Lagrangian approach. The models used for the lift force are discussed through comparisons between numerical and experimental results found in the literature. Some results about the formation of a dust cloud are numerically reproduced and show the major role of the lift force. Simulations of two-dimensional two-phase shock tube flows are also performed including the lift force effects. Although the wave propagation is weakly influenced by the lift force, the force modifies substantially the dynamics of the flow near the wall. Received 17 February 2000 / Accepted 30 November 2000  相似文献   

5.
The surrounding rock needs shotcrete support after drilling and blasting excavation in the tunnel; the high concentration of dust generated in the process will endanger workers’ occupational health. Therefore, to ensure the cleanness and safety of the tunnel construction process, a full-scale model of the tunnel was established based on field data of a high-altitude tunnel of the Sichuan-Tibet railway. The dust production mechanism is summarized by combing the whole process of shotcrete. The Computational Fluid Dynamics (CFD) method was used to study the diffusion and transport of dust under different conditions. The grey relational analysis was applied to investigate the correlation values of the influencing factors on dust diffusion in the shotcrete operation area. The results show that the dust generation mechanism of shotcrete includes the sudden change of particle velocity in the jet area leading to escape and particle impact dust generation, where fine dust is easily dispersed in the tunnel. During continuous dust production, the dust concentration is higher near the wet spraying machine and on the backflow side of the working face. Increasing the air supply volume and shortening the distance between the air duct and the working face is conducive to diluting the dust concentration in the tunnel. In the high-altitude environment, the dust concentration in the tunnel decreases, the diffusion distance becomes smaller, the settlement proportion of dust particles increases, and the risk of secondary pollution increases. The simulation results and the field measurement data are consistent, which can provide theoretical support for the construction site dust control.  相似文献   

6.
A 2D numerical flow model, developed at the Research unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions at ULg, has been applied to flows in a macro‐rough channel. The model solves the shallow water equations (SWE) with a two length scale, depth‐integrated k‐type approach for turbulence modeling. Data for the comparison have been provided by experiments conducted at the Laboratory of Hydraulic Constructions at EPFL. In the experiments with different non‐prismatic channel configurations, namely large‐scale cavities at the side walls, three different 2D flow characteristics could be observed in cavities. With the used numerical model features, especially regarding turbulence and friction modeling, a single set of bottom and side wall roughness could be found for a large range of discharges investigated in a prismatic channel. For the macro rough configurations, the numerical model gives an excellent agreement between experimental and numerical results regarding backwater curves and flow patterns if the side wall cavities have low aspect ratios. For configurations with high aspect ratios, the head loss generated by the preservation of important recirculation gyres in the cavities is slightly underestimated. The results of the computations reveal clearly that the separation of turbulence sources in the mathematical model is of great importance. Indeed, the turbulence related to 2D transverse shear effects and the 3D turbulence, generated by bed friction, can have very different amplitude. When separating these two effects in the numerical models, most of the flow features observed experimentally can be reproduced accurately. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic conveying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical methods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD–DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctuations, which was consistent with the observed experimental results. These findings provide important information for the accurate application of electrostatic measurement devices in pneumatic conveyors.  相似文献   

8.
A numerical study of unsteady single-phase vortical flow inside a cyclone is presented. Two different geometric configurations have been considered, with the goal of assessing several different turbulence modelling approaches for this class of problem. The models investigated include three Reynolds-averaged Navier–Stokes models: a commonly used two-equation eddy-viscosity model, a differential Reynolds stress model (DRSM) and an eddy-viscosity model sensitised to rotational and curvature (RC) effects which was recently developed and implemented into a commercial CFD (computational fluid dynamics) code by the authors. Results were also obtained using large eddy simulation (LES). The computational results are analysed and compared with available experimental data. The RC-sensitised eddy-viscosity model shows significant improvement over the standard eddy-viscosity model. The RC-sensitised model, DRSM and LES model predictions of the mean flowfield are in good agreement with the experimental data. The results suggest that curvature- and rotation-sensitive eddy-viscosity models may provide a practical alternative to more computationally intensive approaches.  相似文献   

9.
In this work we provide numerical validation of the particle migration during flow of concentrated suspension in asymmetric T-junction bifurcation channel observed in a recent experiment [1]. The mathematical models developed to explain particle migration phenomenon basically fall into two categories, namely, suspension balance model and diffusive flux model. These models have been successfully applied to explain migration behavior in several two-dimensional flows. However, many processes often involve flow in complex 3D geometries. In this work we have carried out numerical simulation of concentrated suspension flow in 3D bifurcation geometry using the diffusive flux model. The simulation method was validated with available experimental and theoretical results for channel flow. After validation of the method we have applied the simulation technique to study the flow of concentrated suspensions through an asymmetric T-junction bifurcation composed of rectangular channels. It is observed that in the span-wise direction inhomogeneous concentration distribution that develops upstream persists throughout the inlet and downstream channels. Due to the migration of particles near the bifurcation section there is almost equal partitioning of flow in the two downstream branches. The detailed comparison of numerical simulation results is made with the experimental data.  相似文献   

10.
An experimental study of a double-pipe helical heat exchanger was performed. Two heat exchanger sizes and both parallel flow and counterflow configurations were tested. Flow rates in the inner tube and in the annulus were varied and temperature data recorded. Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. Nusselt numbers were calculated for the inner tube and the annulus. The inner Nusselt number was compared to the literature values. Though the boundary conditions were different, a reasonable comparison was found. The Nusselt number in the annulus was compared to the numerical data. The experimental data fit well with the numerical for the larger heat exchanger. But, there were some differences between the numerical and experimental data for the smaller coil; however these differences may have been due to the nature of the Wilson plots. Overall, for the most part the results confirmed the validation of previous numerical work.  相似文献   

11.
Sand particle erosion is always a challenge in natural gas production. In particular, the erosion in gas–liquid–solid annular flow is more complicated. In this study, a three-phase flow numerical model that couples the volume of fluid multiphase flow model and the discrete phase model was developed for prediction of erosion in annular flow. The ability of the numerical model to simulate the gas–liquid annular flow is validated through comparison with the experimental data. On the basis of the above numerical model, the phase distribution in the pipe was analyzed. The liquid entrainment behavior was reasonably simulated through the numerical model, which guaranteed the accuracy of predicting the particle erosion. Additionally, four erosion prediction models were used for the erosion calculation, among them, the Zhang et al. erosion model predicted the realistic results. Through the analysis of the particle trajectory and the particle impact behavior on the elbow, the cushion effect of the liquid film on the particles and the erosion morphology generation at the elbow were revealed.  相似文献   

12.
This paper presents results of the numerical simulation of periodically unsteady flows with focus on turbomachinery applications. The unsteady CFD solver used for the simulations is based on the Reynolds averaged Navier–Stokes equations. The numerical scheme applies an extended version of the Spalart–Allmaras one-equation turbulence model coupled with a transition correlation. The first example of validation consists of boundary layer flow with separation bubble on a flat plate, both under steady and periodically unsteady main flow conditions. The investigation includes a variation of the major parameters Strouhal number, amplitude, and Reynolds number. The second, more complex test case consists of the flow through a cascade of turbine blades which is influenced by wakes periodically passing over the cascade. The computations were carried out for two different blade loadings. The results of the numerical simulations are discussed and compared with experimental data in detail. Special emphasis is given to the investigation of boundary layers with regard to transition, separation and reattachment under the influence of main flow unsteadiness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Granular bed filters can effectively filter adhesive dust in high-temperature flue gas. In this study, polyvinyl chloride (PVC) powder was used as adhesive dust, and the mixture of PVC and ash powder was used to simulate solid and adhesive mixed dust. The effects of gas temperature, velocity, and inlet adhesive dust mass content on dust distribution in granular bed (GBF) were discussed. Results show that the mixed dust mainly accumulates on the upper part of the granular bed, and the mass of the collected dust decreases exponentially from the upper layer to the bottom layer in the GBF. The adhesive dust content collected in each layer differs from that of the incoming dust, and their deviation varies approximately linearly along with the depth of the bed. The total dust distribution and adhesive dust content deviation are influenced by gas temperature and inlet adhesive dust content but independent of gas velocity. The correlations of dust distribution of solid and adhesive mixed dust are presented based on the experimental results.  相似文献   

14.
This article presents modelling considerations and simulation results for a dust lifting process in a three-dimensional domain. The Eulerian–Lagrangian modelling technique is used. Multiple simulations with different values for the number of particles were performed. The results of the simulations are shown as snapshots of particle position at certain points in time after the passage of a shock wave. Statistical data for the particle positions and collisions are presented. These are: the average height of the particles, the mean square displacement of the particles and the cumulative number of recorded collisions plotted as functions of time. The particle averaged kinetic energy and the mechanical energy lost by particles during collisions are recorded as functions of time in order to study the motion of particles. The results show that simulations of an increasing number of particles render a less intense lifting effect and, more importantly, that the inter-particle and particle–wall collisions represent essential phenomena and need to be included in this type of model. Also, a comparison between two-dimensional and three-dimensional simulations was performed. It was found that, although 2D simulations are still useful, they overestimate the lifting process and therefore a 3D model is preferable. The influence of the magnitude of the restitution and friction coefficients on the process was also studied.  相似文献   

15.
Results of large eddy simulations in a subsonic isothermal turbulent jet exhausting from a circular nozzle into a submerged space or a cocurrent flow are presented. The flow is described by space-averaged Navier-Stokes equations and by the RNG model of subgrid scale viscosity. Results computed for different values of the cocurrency parameter are compared with available results of numerical simulations and experimental data. The results obtained are found to agree well with measured data and to confirm the basic laws of variation of gas-dynamic and fluctuating parameters of submerged and cocurrent jets.  相似文献   

16.
The present work consists in an experimental investigation of the flow issuing from a bent chimney over a downstream obstacle. Our purpose is to explore the resulting flow field and its different characterizing features. These features were captured by means of the Particle Image Velocimetry technique. A numerical simulation of the problem has also been carried out and validated after comparison of the corresponding results to the experimental data. A good level of agreement was achieved between the experiments and the calculations. Then, we tried to upgrade our model by adopting large (real) scale dimensions. Our purpose consisted mainly in the observation and evaluation of the behavior of the incoming flow in presence of a double tandem obstacle. In a second step, we proposed to increase the number of the placed obstacles to four. The results given by the three-dimensional model are likely to highlight the dynamic features of the established field as well as the resulting mass transfer. Finally, we tried to evaluate the effect of further parameters on the characterizing features of the resulting flow filed such as the velocity ratio, the obstacles’ gap, the arrangement of the obstacles and the obstacles’ geometry.  相似文献   

17.
A numerical study of dynamics and heat/mass transfer in a gas-droplet turbulent boundary layer on a vertical flat plate is carried out. A large number of factors which affect the heat and mass transfer and the structure of thermal and concentration fields in a turbulent boundary layer is analyzed. It is shown that the increase in droplet concentration results in the intensification of heat transfer, as compared with the single-phase air flow. The comparison of this analysis with experimental data shows a qualitative and quantitative agreement between the calculated and experimental data.  相似文献   

18.
Stable flow of off-gas dust from dust collector hoppers and storage silos is important for smooth operation. Flow properties of the collected off-gas dust are critical to achieve suitable flow. Various dust samples collected from secondary copper smelter off-gases were studied. The median diameter of the fine-grained dusts varied from 0.8 to 1.4 μm and the flowability ranged from “cohesive” to “very cohesive”. The flowability of shaft and anode furnace dust improved slightly with increasing consolidation stress and their wall friction angles decreased, which is a typical behavior. In contrast, the flowability of converter dust decreased with increasing consolidation stress and its wall friction angles increased. Pre-shear treatment of converter dust worsened its flowability, increased the wall friction angle, and improved the flowability with increasing consolidation stress. This is believed to occur because pre-shear treatment fragments small agglomerates in the dust that improve flowability. The presence of such agglomerates was confirmed by sieving tests. A diagrammatic representation of the flowability showing that the unconfined yield strength is dependent on consolidation stress can be improved by using logarithmically scaled axes.  相似文献   

19.
This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.  相似文献   

20.
A numerical analysis has been performed for three‐dimensional developing turbulent flow in a 180° bend tube with straight inlet and outlet section used by an algebraic Reynolds stress model. To our knowledge, numerical investigations, which show the detailed comparison between calculated results and experimental data including distributions of Reynolds stresses, are few and far between. From this point of view, an algebraic Reynolds stress model in conjunction with boundary‐fitted co‐ordinate system is applied to a 180° bend tube in order to predict the anisotropic turbulent structure precisely. Calculated results are compared with the experimental data including distributions of Reynolds stresses. As a result of this analysis, it has been found that the calculated results show a comparatively good agreement with the experimental data of the time‐averaged velocity and the secondary vectors in both the bent tube and straight outlet sections. For example, the location of the maximum streamwise velocity, which appears near the top or bottom wall in the bent tube, is predicted correctly by the present method. As for the comparison of Reynolds stresses, the present method has been found to simulate many characteristic features of streamwise normal stress and shear stresses in the bent tube qualitatively and has a tendency to under‐predict its value quantitatively. Judging from the comparison between the calculated and the experimental results, the algebraic Reynolds stress model is applicable to the developing turbulent flow in a bent tube that is known as a flow with a strong convective effect. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号