首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

2.
The effect of mechanical and chemical activation in processes of urea intercalation in the interlayer spacing of kaolinite and the effect of varying the temperature of the intercalation product between 100 and 200 degrees C were studied using Fe(3+) ions as a probe in electron paramagnetic resonance (EPR) spectroscopy. Other techniques were also used to characterize the samples. Monitoring the heating of urea-intercalated kaolinite, FTIR, and XRD revealed that the product obtained was stable up to a temperature of 150-160 degrees C. The EPR data indicated that the intercalation process promoted an approximation and increase of the magnetic interactions among the Fe(3+) ions. The DRUV-vis analysis of the product before heating showed an absorption band at 680 nm that was absent in the raw kaolinite. This band was attributed to the transition A(1)6-->T(2)4(G4) in the adjacent Fe(3+) ions, intensified by magnetic coupling among these ions. We suggest that intercalated urea forms hydrogen bonds between the carbonyl's oxygen and the hydroxyls bound to the Fe(3+) ions of the kaolinite structure. This would cause the approximation of the Fe(3+) ions, maximizing magnetic couplings and intensifying concentrated centers of Fe(3+), as was visible by EPR spectroscopy.  相似文献   

3.
In this work, a full ligand-field energy matrix (45 x 45) diagonalization treatment for 3d(2) ions in trigonal symmetry C(3v) is performed on the basis of a central metal ion-ligand covalency model including the ligand spin-orbit (SO) coupling. Optical fine structure and electron paramagnetic resonance (EPR) spectra of ZnO:V(3+) are uniformly explained.  相似文献   

4.
Tea (Camellia Sinensis) is the most widely consumed beverage in the world and is known to have therapeutic, antioxidant and nutritional effects. It contains dimeric flavanols and polyphenols which are known as the most important organic compounds in tea infusions, and can make strong and stable complexes with metal ions. In this study, we carried out a series of electron paramagnetic resonance experiments on well-known paramagnetic transition metal ions, namely Mn2+, Fe3+, Cu2+, VO2+, and Cr3+ doped in black tea cultivated along the shore of Black Sea, Turkey, to see the effects and structures formed.  相似文献   

5.
The analysis of the sequence of electron paramagnetic resonance (EPR) spectra of trace amounts of substitutional probing paramagnetic ions incorporated in (nano)crystalline samples submitted to isothermal and isochronal pulse annealing treatments can offer a wealth of information on the thermally induced compositional and structural changes of the host material. The potential of this new thermal analysis method is illustrated here with results of such investigations on the thermal decomposition of crystalline zinc hydroxide (Zn(OH)2) and anhydrous zinc carbonate basic (Zn5(CO3)2(OH)6) precursors containing trace amounts of substitutional Mn2+ probing ions into nanostructured zinc oxide-ZnO. The quantitative analysis of the sequence of isochronal pulse annealing EPR spectra could provide, besides the thermal decomposition curves of the two precursors, additional information about the structure of the resulting nanostructured ZnO, some of it hard to get by standard structural diffraction techniques. The analysis of both isochronal and isothermal pulse annealing EPR data was further used to investigate the crystallization mechanism of the initially formed nanostructured disordered ZnO and to quantitatively describe the further growth of the resulting ZnO nanocrystals with the increasing annealing temperature and duration.  相似文献   

6.
At 295 K g| = 2.073 and g = 2.155 for Rb2PbCu(NO2)6. The minimum g tensor principal axis is aligned with the c axis of the unit cell which is along the short Cu-N bond in the compressed tetragonal CuN6 environment.  相似文献   

7.
X-band and Q-band electron paramagnetic resonance (EPR) spectra of Cu(2+) in BaF(2) crystal were recorded in the temperature range of 4.2-200 K. Spin-Hamiltonian parameters of single Cu(2+) complexes and of Cu(2+)-Cu(2+) pairs were derived and discussed. A special attention was paid to the dimeric species. Their molecular ground state configuration was found as having antiferromagnetic intradimer coupling with the singlet-triplet splitting J=-35 cm(-1). The zero-field splitting being D=0.0365 cm(-1) at 4.2 K increases with temperature as an effect of thermal population of excited dimer configurations. Electron spin echo (ESE) method was used for measurements of electron spin lattice and phase relaxation. The spin-lattice relaxation data show that except for coupling to the host lattice phonons the Cu(2+) ions are involved in local mode motions with energy of 82 cm(-1). Phase relaxation (ESE dephasing) of single Cu(2+) ions is due to spin diffusion at low temperatures. This relaxation is hampered for temperatures higher than 30 K due to the triplet state population of neighboring Cu(2+)-Cu(2+) dimers, which disturb dipolar coupling between Cu(2+) ions. For higher temperatures the relaxation is dominated by Raman T(1) processes. Fourier transform ESE spectrum displays dipolar Cu-F splitting which allowed determination of the off-center shift of Cu(2+) as delta(s)=0.132 nm. The dynamical effects observed in EPR spectra and in electron spin relaxation both for single Cu(2+) ions and Cu(2+)-Cu(2+) pairs are discussed as due to jumps between six off-center positions in the crystal unit cell and jumps between various dimer configurations.  相似文献   

8.
9.
In the past, the method of reconstitution was used to investigate the interaction between metalloenzymes (containing Zn(II)) and metal ions. In this paper, electron paramagnetic resonance (EPR) has been employed to firstly study the direct interactions between Bacillus subtilis neutral proteinase (BSNP), nuclease P1 and Cu(II) ions added in aqueous solution, respectively. These results show that a dynamic equilibrium exists between the Zn(II) in the active site of native enzymes and the added Cu(II), the added Cu(II) partly replaces the Zn(II), forming Cu(II)-enzyme derivatives. As a result, the activity of the native enzymes is influenced. The influences of pH value on this kind of interaction have also been investigated, and the results demonstrate that the change of pH value has little influence on the system of nuclease P1, but has remarkable influence on BSNP. We firstly obtained the EPR spectra for Cu(II)-enzyme derivatives. In addition, the derivative of Cu(II)-BSNP exists in the solution with two different conformations (I type g(parallel)=2.34, A(parallel) (mT)=13.4; II type g(parallel)=2.25, A(parallel) (mT)=16.1), and this two conformations exchanged each other depending on pH.  相似文献   

10.
Glasses with compositions xNb2O5·(30 ? x)M2O·69B2O3 (where M = Li, Na, K; x = 0, 4, 8 mol%) doped with 1 mol% V2O5 have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400–4000 cm?1. The changes caused by the addition of Nb2O5 on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO2+ ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V4+ ions which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V4+O6 complex decreases with increasing concentration of Nb2O5. The 3dxy orbit contracts with increase in Nb2O5:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported.  相似文献   

11.
Solutions of Fe2(NO)4I2 in DMF exhibit EPR spectra characteristic of [Fe(NO)2]+ at concentrations of 2 x 10?4 mol dm?3, and of an equilibrium mixture of [Fe(NO)2+, Fe(NO)2I, and [Fe(NO)2I2]? at higher concentrations: in THF solutions only Fe(NO)2I is observed, regardless of concentration. Addition of excess halide ions X? (X=Cl, Br, I) to the DMF solution yields [Fe(NO)2X2]?, but addition of excess I? or Br? to the THF solution yields [Fe(NO)2I2? or Fe2(NO)4Br2 respectively. In mixed THF/Et3N solutions, mixtures of [Fe(NO)2]+, Fe(NO)2I, and [Fe(NO)2I2]? are again formed, and subsequent addition of a thiol RSH causes formation of [Fe(NO)2(SR)2]?, a precursor of Fe2(NO)4(SR)2. A scheme is suggested to describe the steps in the preparatively useful conversion of Fe2(NO)4I2 into Fe2(NO)4(SR)2.  相似文献   

12.
Irradiated samples of deproteinized powdered human bone (femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.  相似文献   

13.
14.
The nature of the interaction among Cu(II), adsorbed water, and quartz surface was studied using electron paramagnetic resonance (EPR) spectroscopy. The EPR lineshape gave information concerning the motional status of sorbed Cu(II) that revealed its binding strength at the surface. Two distinct absorption lines of sorbed Cu(II), namely, the liquid-type and the solid-type signal, were simultaneously observed at the fully hydrated surface at room temperature. The absorption lines and the variation of their intensity with experimental and measurement conditions such as degree of hydration, pH, ionic strength, and surface coverage indicated that there exist three kinds of Cu(II) entities, the inner-sphere surface complex, the outer-sphere surface complex, and the surface precipitate on the quartz surface, and that their concentrations change with experimental conditions. The reversible conversion of the liquid-type signal to the solid-type one during the drying-wetting or freezing-melting of the surface suggested the development of multiple layers of adsorbed water molecules on the quartz surface. It is assumed that the innermost layer of the water layers contains the inner-sphere Cu(II) surface complexes, while the outer layers contain the outer-sphere complexes whose binding strength decreases outward with increasing distance from the surface. The result of this work suggests that the sorption mechanism of a metal cation on a given mineral surface; hence its mobility in the environment may change significantly with the solution pH, the ionic strength, and the surface coverage.  相似文献   

15.
Electron paramagnetic resonance (EPR) is often used in dosimetry using biological samples such as teeth and bones. It is generally assumed that the radicals, formed after irradiation, are similar in both tissues as the mineral part of bone and tooth is carbonated hydroxyapatite. However, there is a lack of experimental evidence to support this assumption. The aim of the present study was to contribute to that field by studying powder and block samples of human finger phalanxes that were irradiated and analyzed by multi-frequency EPR. The results obtained from bones are different from the ones obtained in enamel by several respects: the ordering of the apatite crystallites is much smaller in bone, complicating the assignment of the observed CO2- radicals to a specific location, and one type of CO3(3-) radical was only found in enamel. Moreover, a major difference was found in the non-CO2- and non-CO3(3-) signals. The elucidation of the nature of these native signals (in bone and tooth enamel) still represents a big challenge.  相似文献   

16.
Low-molecular weight nitroxide labels (nitroxides) are commonly used as probes in electron paramagnetic resonance (EPR) spectroscopy. The nitroxides exhibit multiple lines in their EPR spectrum due to hyperfine coupling of the unpaired electron with the nitrogen nucleus. In EPR imaging, these hyperfine lines cause either hyperfine-based limitations in the maximum obtainable image resolution or hyperfine-based artifacts in the reconstructed image. In this article we discuss the effect of hyperfine artifacts on the quality of the image and report the application of a numerical method based on forward-subtraction principles for removing hyperfine artifacts in the measured projections. We demonstrate using computer simulations and imaging phantoms that marked enhancement in image quality and resolution can be obtained by removing the hyperfine-imposed limit on the gradient magnitude and performing post-acquisition corrections for removing hyperfine artifacts in the image.  相似文献   

17.
18.
A new series f alkali cationic triple ions of furil and of di-tert-butylazodicarboxylate has been prepared by both photochemical and thermal means. Their ESR features are reported. The thermal stability of these triple ions may be partly due to the nature of the binding of the cations by both the carbonyl and the strategically positioned ether oxygen in the organic radical anions.  相似文献   

19.
By applying the high-order perturbation formulas based on the cluster approach for the EPR parameters of 3d2 ions in trigonal symmetry, the zero-field splitting D, g factors gparallel, gperpendicular, and hyperfine structure constants Aparallel, Aperpendicular for Ti2+ and V3+ ions in CdS crystals are studied. From the studies, the defect structures of these paramagnetic impurity centers are obtained and the EPR parameters are also explained reasonably.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号