首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

2.
Electron paramagnetic resonance (EPR), optical absorption, and FT-IR spectra of vanadyl ions in the sodium-lead borophosphate (Na(2)O-PbO-B(2)O(3)-P(2)O(5)) (SLBP) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO(2+) ions. The spin Hamiltonian parameters g and A are found to be independent of the V(2)O(5) content and temperature. The values of the spin Hamiltonian parameters indicate that the VO(2+) ions in SLBP glasses are present in octahedral sites with tetragonal compression. The population difference between Zeeman levels (N) is calculated as a function of temperature for an SLBP glass sample containing 1.0 mol % VO(2+) ions. From the EPR data, the paramagnetic susceptibility (χ) is calculated at different temperatures, and the Curie constant (C) is calculated from the 1/χ versus T graph. The optical absorption spectra of the glass samples show two absorption bands, and they are attributed to V(3+) and V(4+) ions. The optical band gap energy (E(opt)) and Urbach energy (ΔE) are calculated from their ultraviolet absorption edges. It is observed that, as the vanadium ion concentration increases, E(opt) decreases and ΔE increases. The study of the IR absorption spectrum depicts the presence of BO(3), BO(4), PO(3), PO(4), and VO(5) structural units.  相似文献   

3.
EPR, optical, infrared and Raman spectral studies of Actinolite mineral   总被引:1,自引:0,他引:1  
Electron paramagnetic resonance (EPR), optical, infrared and Raman spectral studies have been performed on a natural Actinolite mineral. The room temperature EPR spectrum reveals the presence of Mn(2+) and Fe(3+) ions giving rise to two resonance signals at g = 2.0 and 4.3, respectively. The resonance signal at g = 2.0 exhibits a six line hyperfine structure characteristic of Mn(2+) ions. EPR spectra have been studied at different temperatures from 123 to 433 K. The number of spins (N) participating in the resonance at g = 2.0 has been calculated at different temperatures. A linear relationship is observed between log N and 1/T in accordance with Boltzmann law and the activation energy was calculated. The paramagnetic susceptibility (chi) has been calculated at different temperatures and is found to be increasing with decreasing temperature as expected from Curie's law. From the graph of 1/chi versus T, the Curie constant and Curie temperature have been evaluated. The optical absorption spectrum exhibits bands characteristic of Fe(2+) and Fe(3+) ions. The crystal field parameter Dq and the Racah parameters B and C have been evaluated from the optical absorption spectrum. The infrared spectral studies reveal the formation of Fe(3+)--OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si--O--Si stretching and Mg?OH translation modes.  相似文献   

4.
A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95-x)B(2)O(3)-5ZnO-xPbO (x=10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps (E(opt)) have been evaluated for these glasses. For a reference glass of 45B(2)O(3)-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A=1.766029949, B=159531.024 nm(2) and C=-1.078 x 10(10) nm(4). Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO(3) and BO(4) units. From DSC thermogram, glass transition temperature (T(g)), crystallization temperature (T(c)) and melting temperature (T(m)) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B(2)O(3)-5ZnO-(50-x)PbO-xCuO (x=0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ((2)B(1g)-->(2)E(g)) and 780 nm ((2)B(1g)-->(2)B(2g)) of Cu(2+) ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol % CuO doped glass with excitations at 306 and 332 nm.  相似文献   

5.
Heavy metal based oxide glasses having composition xBi(2)O(3).(0.30 - x)PbO.0.70B(2)O(3) have been prepared (0.00 < or = x < or = 0.15, mol%) containing 2.0mol% of V(2)O(5) by normal melt-quenching technique. Electron paramagnetic resonance (EPR), optical spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHP) of VO(2+) ions, dipolar hyperfine parameter, P and Fermi contact interaction parameter, K, molecular orbital coefficients (alpha(2) and gamma(2)) and optical band gap have been calculated. It is observed that in these glasses, the tetragonal nature of V(4+)O(6) complex increases with Bi(2)O(3) content. Increase in Bi(2)O(3):PbO ratio results in the contraction of 3d(xy) orbit of the unpaired electron in the vanadium ion, and the SHP are dependent on the theoretical optical basicity, Lambda(th). In present glasses, the conductivity (activation energy) first decreases (increases) with increase in mol% of Bi(2)O(3) content upto x = 0.08 and then shows a maxima (minima) at x = 0.10 and then starts decreasing (increasing) upto x < or = 0.15 with mol% of Bi(2)O(3) content.  相似文献   

6.
A new asymmetrically coordinated bis-trinuclear iron(III) cluster containing a [Fe(3)O](7+) core has been synthesized and structurally, magnetically, and spectroscopically characterized. [Fe(6)Na(2)O(2)(O(2)CPh)(10)(pic)(4)(EtOH)(4)(H(2)O)(2)](ClO(4))(2).2EpsilontOH (1.2EpsilontOH) crystallizes in the P space group and consists of two symmetry-related {Fe(3)O](7+) subunits linked by two Na(+) cations. Inside each [Fe(3)O](7+) subunit, the iron(III) ions are antiferromagnetically coupled, and their magnetic exchange is best described by an isosceles triangle model with two equal (J) and one different (J ') coupling constants. On the basis of the H = -2SigmaJ(ij)S(i)S(j) spin Hamiltonian formalism, the two best fits to the data yield solutions J = -27.4 cm(-1), J ' = -20.9 cm(-1) and J = -22.7 cm(-1), J ' = -31.6 cm(-1). The ground state of the cluster is S = (1)/(2). X-band electron paramagnetic resonance (EPR) spectroscopy at liquid-helium temperature reveals a signal comprising a sharp peak at g approximately 2 and a broad tail at higher magnetic fields consistent with the S = (1)/(2) character of the ground state. Variable-temperature zero-field and magnetically perturbed M?ssbauer spectra at liquid-helium temperatures are consistent with three antiferromagnetically coupled high-spin ferric ions in agreement with the magnetic susceptibility and EPR results. The EPR and M?ssbauer spectra are interpreted by assuming the presence of an antisymmetric exchange interaction with |d| approximately 2-4 cm(-1) and a distribution of exchange constants J(ij).  相似文献   

7.
Single crystals of a new iron-containing oxide, Ba(4)KFe(3)O(9), were grown from a hydroxide melt, and the crystal structure was determined by single-crystal X-ray diffraction. This ferrite represents the first complex oxide containing isolated 6-membered rings of corner-sharing FeO(4) tetrahedra. M?ssbauer measurements are indicative of two tetrahedral high-spin Fe(3+) coordination environments. The observed magnetic moment (~3.9 μ(B)) at 400 K is significantly lower than the calculated spin-only (~5.2 μ(B)) value, indicating the presence of strong antiferromagnetic interactions in the oxide. Our density functional theory calculations confirm the strong antiferromagnetic coupling between adjacent Fe(3+) sites within each 6-membered ring and estimate the nearest-neighbor spin-exchange integral as ~200 K; next-nearest-neighbor interactions are shown to be negligible. The lower than expected effective magnetic moment for Ba(4)KFe(3)O(9) calculated from χT data is explained as resulting from the occupation of lower-lying magnetic states in which more spins are paired. X-band (9.5 GHz) electron paramagnetic resonance (EPR) spectra of a powder sample consist of a single line at g ~ 2.01 that is characteristic of Fe(3+) ions in a tetrahedral environment, thus confirming the M?ssbauer results. Further analysis of the EPR line shape reveals the presence of two types of Fe(6) magnetic species with an intensity ratio of ~1:9. Both species have Lorentzian line shapes and indistinguishable g factors but differ in their peak-to-peak line widths (δB(pp)). The line-width ratio δB(pp)(major)/δB(pp)(minor) ~ 3.6 correlates well with the ratio of the Weiss constants, θ(minor)/θ(major) ~ 4.  相似文献   

8.
The iron phosphate minerals satterlyite and gormanite have been investigated by EPR and optical absorption studies. The optical results indicate the presence of ferrous and ferric ions in both minerals. In gormanite the site symmetry of Fe(III) is near octahedral whereas in satterlyite it is tetragonally distorted. On the other hand, the Fe(II) ions are in tetragonally distorted octahedral site in both minerals. In satterlyite the EPR results indicate the presence of the ferric ion in a tetragonally distorted state together with a small percentage of Mn(II). Crystal field (Dq) and interelectronic parameters (B and C) are evaluated.  相似文献   

9.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

10.
The enzymatic oxidation of silk with H(2)O(2) in the presence of horseradish peroxidase (HRP) has been investigated. Two intermediate complexes have been observed during this reaction. Both can be attributed to Fe(4+) ions axially bonded to an oxygen atom and to a porphyrin radical (P). In the most unstable of them, indicated as compound II, the chemical bond between [Fe(IV)=O](2+) and P was weaker than in the other, indicated as compound I. The former compound disappeared within 1 h of the reaction, at difference with the latter, traces of which were observed even after 3 weeks with dried samples. However, the chemical bond between [Fe(IV)=O](2+) and P in compound I weakened during the sample ageing. All these phenomena have been enlightened by electron paramagnetic resonance (EPR) and spectrophotometric ultraviolet/visible (UV/Vis) measurements.  相似文献   

11.
The effect of mechanical and chemical activation in processes of urea intercalation in the interlayer spacing of kaolinite and the effect of varying the temperature of the intercalation product between 100 and 200 degrees C were studied using Fe(3+) ions as a probe in electron paramagnetic resonance (EPR) spectroscopy. Other techniques were also used to characterize the samples. Monitoring the heating of urea-intercalated kaolinite, FTIR, and XRD revealed that the product obtained was stable up to a temperature of 150-160 degrees C. The EPR data indicated that the intercalation process promoted an approximation and increase of the magnetic interactions among the Fe(3+) ions. The DRUV-vis analysis of the product before heating showed an absorption band at 680 nm that was absent in the raw kaolinite. This band was attributed to the transition A(1)6-->T(2)4(G4) in the adjacent Fe(3+) ions, intensified by magnetic coupling among these ions. We suggest that intercalated urea forms hydrogen bonds between the carbonyl's oxygen and the hydroxyls bound to the Fe(3+) ions of the kaolinite structure. This would cause the approximation of the Fe(3+) ions, maximizing magnetic couplings and intensifying concentrated centers of Fe(3+), as was visible by EPR spectroscopy.  相似文献   

12.
Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex [Fe(O)(NH(3))(4)(H(2)O)](2+) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex [Fe(O)(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes [Fe(O)(TMP)(X)](+) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.  相似文献   

13.
Electron paramagnetic resonance (EPR) studies have been carried out on Mn2+ ions doped in zinc malate trihydrate single crystals in the temperature range 123-413 K on X-band frequency. The EPR spectrum at room temperature exhibits a group of five fine structure transitions each splits into six hyperfine components. Angular variation studies reveal that Mn2+ ions enter the lattice substitutionally. From the observed EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The variation of zero-field splitting parameter (D) with temperature is measured. From the optical absorption spectrum, the crystal field splitting parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The infrared spectrum exhibits bands characteristic of the carboxylic acid salts.  相似文献   

14.
Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)?BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.  相似文献   

15.
In view of the importance in understanding biomineralization processes in different molluskan species, the common fresh water apple snail Pila globosa in Indian origin was taken to explore its mineralized exoskeleton structures. The detailed structural studies of the exoskeletons of P. globosa have been undertaken. The isolated layers present in these shells were studied by electron paramagnetic resonance (EPR), optical absorption, and infrared spectral techniques. The EPR spectra of the organic protein layer periostracum show the characteristic signals corresponding to Fe(3+) ions at g = 4.1 and 2.0. The EPR spectra of the ostracum (middle) layer at room temperature gives a complicated spectrum consisting of a number of Mn(2+) signals of at least three sets due to the aragonite nature of the material. The results indicate the presence of the multivalent manganese ions, which undergo the redox mechanisms. The thermal variation of the EPR spectra show marked effect on these samples both in g-values and the basic spectral pattern.  相似文献   

16.
The local coordination of the Fe(3+)-centers in Li[Co(0.98)Fe(0.02)]O(2) cathode materials for lithium-ion batteries has been investigated by means of XRD and multi-frequency EPR spectroscopy. EPR clearly showed the Fe(3+) being in a high-spin state with S = 5/2. The set of spin-Hamiltonian parameters obtained from multi-frequency EPR experiments with Larmor frequencies ranging between 9.8 and 406 GHz was transformed into structural information by means of an expansion to standard Newton-superposition modeling, termed as Monte-Carlo Newman superposition modeling. Based on this analysis, an isovalent incorporation of the Fe(3+)-ions on the Co(3+)-sites, i.e. Fe(x)(Co), has been shown. With that respect, the positive sign of the axial second-order fine-structure interaction parameter B(0)(2) is indicative of an elongated oxygen octahedron, whereas B(0)(2) < 0 points to a compressed octahedron coordinated about the Fe(3+)-center. Furthermore, the results obtained here suggest that the oxygen octahedron about the Fe(3+)-ion is slightly distorted as compared to the CoO(6) octahedron, which in turn may impose mechanical strain to the cathode material.  相似文献   

17.
Ce-doped borosilicate (BSG), phosphosilicate (PSG), and borophosphosilicate (BPSG) glasses (B:P:Si molar ratios 8:0:92, 0:8:92, and 8:8:84; Ce:Si molar ratio 1 x 10(-)(4) to 1 x 10(-)(2)) were prepared by the sol-gel method. High-resolution transmission electron microscopy (HRTEM), (31)P, (29)Si, and (11)B magic angle spinning nuclear magnetic resonance (MAS NMR), electron paramagnetic resonance (EPR), and UV-vis absorption investigations demonstrated that, in PSG and BPSG, Ce(3+) ions interact with phosphoryl, [O=PO(3/2)], metaphosphate, [O=PO(2/ 2)O](-), and pyrophosphate, [O=PO(1/2)O(2)](2)(-), groups, linked to a silica network. This inhibits both CeO(2) segregation and oxidation of isolated Ce(3+) ions to Ce(4+), up to Ce:Si = 5 x 10(-)(3). In BSG, neither trigonal [BO(3/2)] nor tetrahedral [BO(4/2)](-) boron units coordinate cerium; thus, Ce(3+) oxidation occurs even at Ce:Si = 1 x 10(-)(4), as in pure silica glass (SG). The homogeneous rare-earth dispersion in the host matrix and the stabilization of the Ce(3+) oxidation state enhanced the intensity of the photoluminescence emission in PSG and BPSG with respect to BSG and SG. The energy of the Ce(3+) emission band in PSG and BPSG matrixes agrees with the phosphate environment of the rare earth.  相似文献   

18.
The zero-field splitting parameters (ZFS) of Mn(4+) and Fe(3+) ions in LiAlO(2) with a layered structure are analyzed experimentally and theoretically by using high-frequency electron paramagnetic resonance spectroscopy, Neuman superposition model (NSM), DFT and multiconfigurational calculations. The interpretation of ZFS is based on the comparison of the experimentally determined values with the calculated ones. This approach allows assessing the performance of different methods for computation of ZFS of Fe(3+) and Mn(4+) in layered oxide matrices. DFT and multiconfigurational calculations are used to analyze the effect of oxygen, aluminium, and lithium neighbours on ZFS of Fe(3+) and Mn(4+). These calculations are based on a cluster comprising Fe(3+) or Mn(4+) ions in a trigonally compressed octahedron with 6 metal ions (Al(3+) or Co(3+)) as first metal neighbours and 6 O(2-) and 2 Li(+) (above and below the layer) as second neighbours. A satisfactory agreement with the experimental data is achieved when the local structure of Mn(4+) and Fe(3+) deviates from the trigonal host-site geometry. The local structure of Fe(3+) comprises an axial distortion, while trigonal environment with reduced extent of distortion appears around Mn(4+).  相似文献   

19.
Electron Paramagnetic Resonance (EPR), optical and infrared (IR) spectral studies have been performed on the pure and Cu-adsorbed exoskeletons of marine environment. The EPR spectrum of exoskeletons at room temperature exhibits a sharp signal at g approximately 1.9970. The possible redox mechanisms have been noticed on heating these exoskeletons in which the low spin Mn(3+) reduces to Mn(2+). The optical absorption spectra also give the evidence of the presence of Mn(3+) ions. The effects of thermal sintering on the EPR spectra have been studied and discussed in detail. The Cu-adsorbed samples clearly showed the adsorption of the Cu(2+) ions over CaCO(3) and the redox mechanism in these samples have been monitored by EPR.  相似文献   

20.
FTIR, UV-VIS and EPR spectra of manganese doped lead-tellurate glasses with composition xMnO·(100-x)[4TeO2·PbO2] where x=0, 1, 5, 10, 20, 30, 40mol% have been studied. The FTIR spectra show the formation of the Mn-O-Pb and Mn-O-Te bridging bonds by increasing of MnO concentration. The UV-VIS spectra show the Mn(+3) species exhibit pronounced absorption, which masks the Mn(+2) spin-forbidden absorption bands when Mn(+2) ions are in high concentrations in these glasses. The EPR spectra exhibit resonance signals characteristic of Mn(+2) ions. The resonance signal located at g≈2 is due to Mn(+2) ions in an environment close to octahedral symmetry, whereas the resonance at g≈4.3 and 3.3 are attributed to the rhombic surroundings of the Mn(+2) ions. The increase in the MnO content gives rise to absorption at g≈2.4 and the paramagnetic ions are involved in dinuclear manganese centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号