首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the structure of holey-fiber cladding on the spectral broadening of femtosecond laser pulses is experimentally studied. These experiments demonstrate that the spectral broadening of 70-fs pulses of 800-nm Ti:sapphire laser radiation transmitted through 2- and 3-μm-pitch holey fibers can be enhanced by a factor of about 1.5 by increasing the air-filling fraction of the fiber cladding from 16 up to 65%. Received: 23 April 2001 / Revised version: 18 June 2001 / Published online: 18 July 2001  相似文献   

2.
Changes in the spectra of femtosecond laser pulses propagating through fibers with a cladding having the structure of a two-dimensional photonic crystal are experimentally investigated. It is demonstrated that the waveguide properties of defect modes of photonic-crystal fibers provide an opportunity to considerably increase the efficiency of spectral broadening of short laser pulses as compared with conventional fibers.  相似文献   

3.
多孔微结构光纤中飞秒激光脉冲超连续谱的产生   总被引:21,自引:1,他引:21       下载免费PDF全文
报道了利用800nm飞秒激光脉冲在多孔微结构光纤中产生超连续谱展宽的现象,连续谱展宽范围为440—890nm.基于标量波近似理论对微结构光纤包层的有效折射率和基模的有效面积以及光纤的色散特性进行了计算,发现微结构光纤具有特殊的控制色散和波导特性的能力,对超连续谱展宽的机理进行了初步解释.本文的理论分析和实验结果有较好的一致性,认为即使包层由无序填充气线组成的多孔微结构光纤也可以出现超连续谱展宽效应. 关键词: 多孔微结构光纤 超连续谱 有效折射率 色散  相似文献   

4.
利用飞秒激光脉冲在长度为10cm,包层具有大空气比的双折射微结构光纤中通过高阶模相位 匹配的四波混频获得了波长可调谐的反斯托克斯波.实验中脉冲宽度为35fs,中心波长820nm ,单脉冲能量4nJ的飞秒激光脉冲耦合到长轴直径为5μm,短轴为46μm的双折射微结构光 纤中.在高阶模传输情况下,通过调制耦合光的偏振方向,获得了具有不同中心波长的反斯 托克斯波.通过对比分析,讨论了输入光的偏振态对双折射微结构光纤中高阶模式下四波混 频效应的影响情况.理论计算分析很好的解释了实验结果. 关键词: 微结构光纤 飞秒脉冲激光 四波混频  相似文献   

5.
Photonic-molecule modes of a cobweb-microstructure fiber allow efficient nonlinear optical spectral broadening of nanojoule femtosecond light pulses. Spectral widths of approximately 200 nm are achieved at the output of a 6-cm sample of such a fiber for 40-fs Ti:sapphire laser pulses with an energy of a few nanojoules coupled into photonic-molecule modes. Higher values of the group index and a lower group-velocity dispersion, attainable with higher-order photonic-molecule modes, allow the efficiency of spectral broadening of femtosecond laser pulses to be increased relative to the efficiency of spectral broadening in the fundamental photonic-molecule mode. Received: 9 June 2002 / Revised version: 29 June 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +7-095/939-3959, E-mail: zheltikov@top.phys.msu.su  相似文献   

6.
The properties of waveguide modes in hollow-core microstructure fibers with two-dimensionally periodic and aperiodic claddings are studied. Hollow fibers with a two-dimensionally periodic cladding support air-guided modes of electromagnetic radiation due to the high reflectivity of the cladding within photonic band gaps. Transmission spectra measured for such modes display isolated maxima, visualizing photonic band gaps of the cladding. The spectrum of modes guided by the fibers of this type can be tuned by changing cladding parameters. The possibility of designing hollow photonic-crystal fibers providing maximum transmission for radiation with a desirable wavelength is demonstrated. Fibers designed to transmit 532-, 633-, and 800-nm radiation have been fabricated and tested. The effect of cladding aperiodicity on the properties of modes guided in the hollow core of a microstructure fiber is examined. Hollow fibers with disordered photonic-crystal claddings are shown to guide localized modes of electromagnetic radiation. Hollow-core photonic-crystal fibers created and investigated in this paper offer new solutions for the transmission of ultrashort pulses of high-power laser radiation, improving the efficiency of nonlinear-optical processes, and fiber-optic delivery of high-fluence laser pulses in technological laser systems.  相似文献   

7.
Photonic-crystal fibers provide efficient nonlinear-optical transformations of femtosecond Cr: forsterite laser pulses, delivering linearly chirped frequency-shifted broadband light pulses optimized for pump-probe nonlinear absorption spectroscopy of molecular aggregates. The blue-shifted output of a photonic-crystal fiber with a spectrum stretching from 530 to 680 nm is used to probe one-and two-exciton bands of thiacarbocyanine J aggregates in a polymer film excited by femtosecond second-harmonic pulses of the Cr: forsterite laser.  相似文献   

8.
The formation of nanostructures on the surface of single-crystal silicon carbide under ablation by femtosecond laser pulses in liquid ethanol has been experimentally investigated. A 800-nm Ti:sapphire laser with a pulse duration of 210 fs was used as a radiation source. Single-scan irradiation of SiC surface leads to the formation of periodic grooves with a period of about 200 nm. Double exposure with a sample rotation by 90° between the scans gives rise to a regular array of nanostructures with average lateral size of 10 to 15 nm. It is determined that the wettability of nanostructured SiC surface is improved in comparison with the initial surface. It is shown that nanostructuring of SiC surface leads to an increase in the red light transmission by a factor of more than 60.  相似文献   

9.
The modes guided in a ring system of microstructure-integrated fibers are shown to have much in common with electron wave functions in a two-dimensional polyatomic cyclic molecule. This photonic-molecule analogy provides, in particular, an illustrative and physically clear model of dispersion properties and the mode structure of an electromagnetic field in microstructure fibers of the considered type. A high degree of light confinement in waveguide modes of such a photonic molecule enhances nonlinear-optical processes, permitting an octave spectral broadening to be achieved for low-energy femtosecond laser pulses.  相似文献   

10.
Chen NK  Hsu DY  Chi S 《Optics letters》2007,32(15):2082-2084
We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).  相似文献   

11.
利用亚纳焦量级、脉冲宽度为100 fs的激光脉冲在双折射光子晶体光纤中获得了450—1050 nm 的超连续光谱,且超连续光谱具有明显的分立峰状结构.分析了光谱中分立峰状结构产生的物理机制,抽运光波长处于接近零色散波长的反常色散区,形成高阶光孤子,由于高阶非线性和高阶色散的影响,高阶孤子分裂成多个基孤子,使初始光谱上演化出红移的光孤子成分和蓝移的色散波成分.理论模拟了飞秒激光脉冲在光纤中的色散特性和传输特性,较好地解释了实验结果. 关键词: 光子晶体光纤 超连续光谱产生 孤子分裂 脉冲俘获  相似文献   

12.
A subpicosecond KrF laser system (248 nm, 0.5 ps) was used as a light source for ablation of PMMA Mylar and Kapton. The time-dependent reflectivity of the light-induced plasma mirror as measured by 496 nm, 0.5 ps long probe pulses showed an increase of up to 94% with 0.4–1 ps rise time and 10–15 ps fall time. The highdensity plasma mirror shows perfect optical quality, and seems to be a promising light-controlled ultrafast switch for UV and visible light. The spectrum of the UV light reflected from the ablated spot is blue shifted by 0.5 nm and shows 1 nm broadening.  相似文献   

13.
Ritari T  Genty G  Ludvigsen H 《Optics letters》2005,30(24):3380-3382
We exploit both the high nonlinearity and the holey structure of microstructured fibers to combine a broad-band light source and a gas cell in a single microstructured fiber. A broadband supercontinuum is formed by launching nanosecond pulses from a compact, Q-switched Nd:YAG laser into a microstructured fiber filled with acetylene. This continuum is self-referenced to the acetylene lines in the 1500 nm region. The performance of different index-guiding narrow-core microstructured fibers as nonlinear and host media is evaluated. The concept offers many possibilities and can be applied to various gases absorbing at different wavelengths.  相似文献   

14.
A highly efficient double-clad Yb3+-doped fiber laser with a novel cladding geometry is described. A round double-clad fiber with a small D-shaped hole for breaking a circular symmetry in a cladding combines the advantages of ease of manufacture and handling round fibers with efficient absorption of pump light. Fiber lasers with a double-D cladding shape and a D-hole cladding are compared. We report what are to our knowledge the highest slope efficiencies of 73% and 69%, respectively, pumping at 915 nm. Output powers in excess of 13 W are demonstrated.  相似文献   

15.
We investigate nonlinear interaction of nitrogen molecules with a two-color laser field composed by an intense800 nm laser pulse and a weak 400 nm laser pulse.It is demonstrated that the spectrum of 400 nm pulses is dramatically broadened when the two beams temporally overlap.In comparison,the spectral broadening in argon is less pronounced,although argon atoms and nitrogen molecules have comparable ionization potentials.We reveal that the dramatic spectral broadening originates from the greatly enhanced nonlinear optical effects in the near-resonant condition of interaction between the 400 nm pulses and the nitrogen molecular ions.  相似文献   

16.
The generation of near-infrared and intense visible light through stimulated multi-wave mixing processes in single-mode silica-based optical fibers pumped by a Q-switched and mode-locked Nd:YAG laser operated at 1.319 μm is described. The experimental results show that intense infrared light around 1.2 μm is produced via selp-hase-matched four-photon mixing at the minimum group velocity dispersion region of pure SiO2-core and P2O5-doped silica fibers. In the visible spectral region, from 580 nm to 600 nm, 20 W peak power 100-ps pulses were generated by pumping single spans of single-mode P2O5-doped and undoped SiO2-core fibers with 1.319-μm laser pulses. The signal light generated in such fibers propagated in the LP02 fiber mode and exhibited a threshold power that depended upon the fiber length and a critical length that was power dependent. Also, it exhibited an asymmetrical spectrum of a few nanometers bandwidth, with a long tail toward high frequencies. For GeO2-doped silica-based fibers, a multiple-wavelength visible signal propagating in several high-order fiber modes was generated.  相似文献   

17.
Geng J  Wang Q  Jiang Z  Luo T  Jiang S  Czarnecki G 《Optics letters》2011,36(12):2293-2295
We generated single-frequency pulses at kilowatt peak power from an all-fiber Tm-doped master oscillator power amplifier system, which is the first report of this kind (to the best of our knowledge) of a laser in the 2 μm region. Compared with the laser linewidth of seed pulses, spectral broadening by a factor of 3 was observed with the amplified pulses. This was attributed to self-phase modulation in passive pigtail fibers of the components (isolator and wavelength division multiplexing) that were placed after the fiber amplifier. The short pulse width (~7 ns) of the kilowatt-level pulses prevents an onset of stimulated Brillouin scattering in the long fiber. When launching the pulses into several-meter single-mode fiber, significant nonlinear spectral broadening occurs due to modulation instability in the fiber. This reaction is beneficial for generation of a mid- and long-wavelength IR supercontinuum in nonlinear IR fibers.  相似文献   

18.
In this paper, a 120-fs pulse transmission experiment is carried out using disordered birefringent microstructure fibers with cladding ventages. Through this experiment, it is found for the first time that remarkable Stokes and anti-Stokes waves can also be produced when the central wavelength of the incident pulse is in the normal dispersion regime of the microstructure fiber. The generation of the two waves can be explained by the four-wave mixing phase matching theory. Properties of the two waves under the action of femtosecond laser pulses with different parameters are studied. The results show that the central wavelength of anti-Stokes waves and Stokes waves produced under the two orthogonal polarization states shift by 63 nm and 160 nm, respectively. The strengths and central positions of the two waves in birefringent fibers can be controlled by adjusting the phase match condition and the polarization directions of incident pulses.  相似文献   

19.
Generation of sub-20-fs UV pulses with more than 300 μJ energy at 268 nm is reported. First, the UV pulses are produced by successive second-harmonic and third-harmonic (TH) generation of 805 nm pulses of a 1 kHz Ti:sapphire laser amplifier. The spectral broadening of TH pulses is realized in a filament, generated in argon. The produced pulses are compressed in a simple double-pass prism-pair compressor. Starting from 100 fs pulses, we achieve a fivefold pulse shortening.  相似文献   

20.
Spectral broadening of radiation emitted by a femtosecond Cr:forsterite laser in highly nonlinear fibers (HNLFs) has been investigated. Tapered HNLFs as well as fibers with constant dispersion and dispersion varying over the fiber length are investigated. The nonreciprocal effect of spectral broadening in fibers with varying dispersion is observed. A supercontinuum is obtained in the range from 990 to 2100 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号