首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
利用MODIS图像反演中国近海海域的气溶胶光学特性   总被引:1,自引:0,他引:1  
针对中国近海海域的水体大多是混浊水体和其上空有较多吸收性气溶胶的情况,提出了适合反演该区域上空气溶胶光学特性的新算法.该算法利用多个查找表和基于经验得到下垫而为等效干净水体的晴空图像,采用插值方法实现了对中国近海海域上空气溶胶光学特性的反演.经过在东山岛地区同地面同步观测多次实验对比,结果发现该算法可行且具有较高的精度;并以渤海湾地区为例,进行了初步的反演应用研究.该算法不仅能为我国海洋和风云系列卫星资料的大气校正研究提供相关的技术基础,还可以直接利用刚发射的FY-3卫星上的CMODIS数据来反演近海海域的气溶胶光学特性.  相似文献   

2.
边健 《应用光学》2013,34(1):74-78
利用Terra卫星的MISR传感器数据进行渤海湾上空气溶胶反演的初步研究。采用分区暗像元的方法进行反演,传统暗像元大气校正算法认为研究区域上空的气溶胶光学厚度呈均匀分布状态。针对传统暗像元算法的不合理性, 将渤海湾划分为7个子区域, 每个子区域利用传统暗像元算法估算其气溶胶光学厚度, 然后结合空间插值算法获取整个渤海湾的气溶胶光学厚度信息。研究结果表明: 渤海湾上空的气溶胶光学厚度呈沿海岸线高,近海区低的阶梯分布模式,与传统暗像元算法相比, 分区暗像元算法综合考虑了水体上空气溶胶光学厚度空间分布的不均匀性, 有利于改善大气校正的精度。  相似文献   

3.
Xu H  Gu XF  Li ZQ  Li L  Chen XF 《光谱学与光谱分析》2011,31(10):2798-2803
水体大气校正问题是开展我国环境一号卫星水色遥感定量化应用的关键。针对环境卫星CCD相机的特点,以水气耦合的辐射传输模型构建大气校正参数查找表,研究以地面气象数据辅助的逐像元水体大气校正方法,实现水体离水反射率和遥感反射比的反演。以现场测量数据和MODIS数据为参考进行水体大气校正效果验证,研究发现CCD相机的反演结果在蓝、绿波段的精度较高而红、近红的反演结果系统偏大。研究结果还表明气溶胶模型是影响水体大气校正精度的重要因素。  相似文献   

4.
耦合京津冀气溶胶模式的HJ-1卫星CCD数据大气校正   总被引:1,自引:0,他引:1  
针对目前HJ-1 CCD大气校正没有考虑中国地区气溶胶模式的问题,提出一种耦合中国地区局部气溶胶模式的大气校正方法。以京津冀地区作为研究区域,该方法对地基北京城区和香河站点反演的气溶胶模式参数进行聚类,得到京津冀地区具有代表性的四类气溶胶模式,并根据四类气溶胶模式来建立查找表进行气溶胶光学厚度的反演。HJ-1 CCD数据没有短波红外波段(2.12 μm),无法采用MODIS的气溶胶算法中获得地表反射率的方法来计算蓝红波段的反射率,本文在气溶胶光学厚度的反演中采用HJ-1卫星的蓝色(0.43~0.52 μm)和红色(0.63~0.69 μm)波段的反射率比值作为误差方程的依据,不需要输入地表目标的反射率。基于反演后的光学厚度对HJ-1 CCD数据进行大气校正,并与ASD光谱辐射计测量数据以及MODIS地表产品数据(MOD09)进行对比。结果表明,该方法得到的大气校正结果与ASD测量结果接近,并与MOD09有较强的相关性,红色波段的平均相关系数达到了0.8以上,受气溶胶影响最大的蓝色波段平均的相关系数也达到了0.75左右。  相似文献   

5.
大气散射效应作为CO2反演的主要误差源,严重影响了全球大气CO2卫星产品的应用研究。气溶胶作用以及气溶胶与地表综合作用是大气散射的重要来源。基于O2-A,CO2 1.6和2.06 μm三个光谱带中的强、弱吸收峰和连续谱,从大气气溶胶光学厚度和地表反照率的角度,分析三光谱带具有的相关信息,提出改进的全物理反演方法,对相关性很强的气溶胶光学厚度和地表反照率这两个散射相关参数进行同步反演,实现大气CO2反演中的散射效应校正。模拟计算气溶胶影响、气溶胶和地表反照率两者综合影响导致的CO2反演误差,并进行校正,极端情况下导致的8% CO2反演误差可校正到1% 内,气溶胶类型差异导致最高达10%的散射影响可校正到2%内,显示了方法的有效性,同时通过对校正效果的评估,表明该方法应用于卫星数据高精度反演的潜力,也指出了实际应用时需要关注的问题。  相似文献   

6.
资源三号卫星多光谱数据的大气校正研究   总被引:2,自引:0,他引:2  
资源三号卫星多光谱数据空间分辨率达到5.8 m,能够很好的应用于地物分类和识别,由于其缺乏短波红外波段,无法采用暗目标法进行大气校正,因此,提出通过6S辐射传输模型构建大气校正系数查找表,结合MODIS数据反演的气溶胶光学厚度参数的大气校正方法,对ZY-3卫星多光谱(MUX)数据进行大气校正。采用敦煌地区星地同步测量的石膏矿、戈壁两种地物光谱对大气校正结果进行了验证,并比较了大气校正前后归一化植被指数(NDVI)。结果表明:大气校正后的地面反射率与石膏矿、戈壁两种地物实测光谱数据相对误差不超过6%;大气校正增大了植被的NDVI与其他地物的NDVI的差值,突出在植被监测方面的应用能力。  相似文献   

7.
大气气溶胶偏振遥感研究进展   总被引:3,自引:0,他引:3  
POLDER-1是国际上第一个可以获取偏振光观测的星载对地探测器, 随着POLDER/PARASOL等偏振仪器的应用, 偏振遥感在国际上已成为一个快速发展的研究领域, 并在大气气溶胶监测等方面发挥了重要的作用, 取得了一系列研究成果。从POLDER/PARASOL,APS(aerosol polarimetry sensor)和航空偏振相机、地基偏振观测平台三个方面综述了大气气溶胶偏振遥感近20年(1993-2013)的研究进展, 重点介绍: (1)POLDER/PARASOL陆地上空和海洋上空气溶胶参数反演算法; POLDER/PARASOL气溶胶光学厚度(AOD)产品精度验证、应用以及与MODIS等卫星AOD产品的对比分析。(2)MICROPOL,RSP和APS陆地上空和海洋上空气溶胶参数反演算法; 国产多角度航空偏振相机(directional polarimetric camera, DPC)的气溶胶参数反演算法。(3)CE318-2和CE318-DP的气溶胶地基偏振反演算法。其中卫星、航空和地面气溶胶参数反演的结果包括总的AOD、细粒子AOD、粗粒子AOD、粒子谱分布、粒子形状、复折射指数、单次散射反射率、散射相函数、偏振相函数以及云顶AOD。在以上研究基础上, 提出了大气气溶胶偏振遥感研究存在的问题及展望, 为大气气溶胶偏振遥感研究提供有价值的参考。  相似文献   

8.
基于MODIS数据的杭州地区气溶胶光学厚度反演   总被引:1,自引:0,他引:1  
气溶胶类型在反演光学厚度时非常重要,采用待反演地区最合理的气溶胶类型可以极大地提高反演精度。结合中分辨率成像光谱仪(MODIS)的数据,提出一种确定气溶胶各组分体积百分比的数学模型,利用这种数学模型得到自定义的杭州地区气溶胶类型,结合改进的暗像元法并基于6S大气辐射传输模式可以反演得到气溶胶光学厚度。将反演结果与AERONET太阳光度计的气溶胶观测值进行对比,结果显示反演的相对误差绝对值在20%以内。采用6S大气辐射传输模式给出的标准气溶胶类型对杭州地区大气进行光学厚度反演,将反演结果和采用自定义气溶胶类型时的反演结果分别与太阳光度计的观测值进行对比,结果表明采用自定义的气溶胶类型时反演值的相对误差绝对值比采用标准气溶胶类型时反演值的相对误差绝对值要低3%以上。  相似文献   

9.
利用兰州大学大气科学学院半干旱气候变化教育部重点实验室(SACOL站)气溶胶地基观测资料订正出的地表反射率及构建的沙尘气溶胶模型,借助6S大气辐射传输模式,对Terra卫星上的中分辨率成像光谱仪(MODIS)的L1B多光谱资料,进行了沙尘气溶胶光学厚度的个例反演试验。结果表明,四种反演方案的沙尘气溶胶光学厚度的区域分布均比较合理,说明反演方法可行;考虑了波长指数,并用SACOL资料构建的气溶胶模型进行大气订正得出的地表反射率反演出的沙尘气溶胶光学厚度最接近实际测量值,误差为-7.3%。通过对反演过程中的误差进行数值试验检验,结果表明反演方法比较稳定。  相似文献   

10.
基于改进暗目标法山区HJ CCD影像气溶胶光学厚度反演   总被引:2,自引:0,他引:2  
国产HJ CCD影像在环境与灾害监测预报方面具有巨大的应用潜力,但其缺少中红外波段无法直接应用传统暗目标法反演气溶胶光学厚度,尤其山区受地形影响,气溶胶时空分布变化显著,影响了HJ CCD影像的大气校正精度。基于山区森林植被分布广的特点引入红波段直方图阈值法自动提取山区浓密植被暗像元,构建红蓝波段地表反射率间的线性关系,利用6S辐射传输模型建立查找表反演暗像元的气溶胶光学厚度,并通过空间插值推演到整幅影像。HJ CCD影像反演结果与MODIS气溶胶产品的空间分布趋势一致性非常好,且前者具有更高的空间分辨率特性,更适合山区气溶胶的遥感监测。二者的散点图拟合曲线为y=0.828 6x-0.001,R2达到0.984 3,表明改进暗目标法能有效地反演山区HJ CCD影像气溶胶光学厚度。工作中对传统暗目标法的改进有效地解决了HJ CCD影像只有可见光、近红外波段,在求解辐射传输方程时信息不足的问题,同时,改进方法中充分考虑了山区复杂地形环境的影响,为山区HJ CCD影像进行逐点大气校正奠定了基础,并为其自动化处理提供了可能。分析还显示,红波段直方图阈值法提取浓密森林暗像元比NDVI阈值法具有明显的优势;查找表建立和暗像元红、蓝波段地表反射率关系都会显著的影响气溶胶光学厚度的反演精度,是进一步改善算法、提高反演精度的重要研究方向。  相似文献   

11.
基于清洁水体像元法的环境-1A卫星CCD水体图像大气校正   总被引:1,自引:0,他引:1  
环境卫星(HJ-1A/B)的CCD图像数据在内陆水环境遥感监测中具有很大的潜力,但它的大气校正的精度是影响其定量化应用的重要因素.文章以上海淀山湖地区HJ-1A卫星搭载的CCD1多光谱数据为应用实例,首先实现了瑞利散射的精确计算,在气溶胶散射的计算中,由于内陆湖泊Ⅱ类水体的光学特性,致使环境星CCD数据的近红外波段的离...  相似文献   

12.
基于6S模型的遥感影像逐像元大气纠正算法   总被引:4,自引:0,他引:4  
大气纠正的目的是从遥感影像中去除大气影响,并反演获取地物真实反射率。介绍了一种逐像元对遥感影像进行大气纠正的算法,该算法基于6S(Second Simulation of the Satellite Signal in the Solar Spectrum)大气辐射传输模型计算建立的查找表(look-up table),并利用地面暗目标(dark object)进行陆地气溶胶光学厚度的自动反演,由于气溶胶的分布具有空间连续性,在获取地面暗目标气溶胶光学厚度值后,通过空间插值的方法计算影像中非暗目标像元的气溶胶光学厚度值,经过查找表二次插值计算,逐像元进行大气纠正并获取像元地表反射率值。以Landsat5遥感影像为例,介绍了算法流程,展示了大气纠正的结果。结果显示,利用查找表逐像元大气纠正的算法,能够在一定程度上去除云雾对影像的影响,更加精确的对遥感影像进行大气纠正并获取地物的真实反射率。  相似文献   

13.
大气气溶胶是影响城市环境空气质量的重要因素,同时对人类健康具有重要影响。传统的气溶胶遥感反演方法多适用于海洋及植被等地表反射率较低的区域,对于城市等高亮地表区域,地表反射率较高且难以确定,气溶胶反演面临巨大挑战。针对该问题,提出一种新的地表反射率的确定方法,将下垫面划分为暗地表和亮地表两种类型,分别使用可见光与短波红外的线性关系和利用长时间序列MODIS表现反射率数据使用最小值合成技术构建先验数据集的方法,确定其地表反射率,然后基于辐射传输方程理论利用查找表方法,进行气溶胶光学厚度反演。选择下垫面复杂、空气污染问题严重的北京市作为研究区,应用MODIS数据进行气溶胶反演实验,最后使用北京站、香河站、北京CAMS站和北京RADI站4个AERONET气溶胶地基观测数据和MODIS气溶胶产品对反演结果进行对比验证。结果表明该算法气溶胶反演结果与地基观测数据具有较高的一致性(R2=0.902),能以较高精度实现城市等高反射率地区的气溶胶反演,反演精度与空间连续性上较MOD04有显著提高。  相似文献   

14.
海洋大气气溶胶光学模型参数的相关性研究   总被引:1,自引:0,他引:1  
气溶胶光学模型参数在气溶胶遥感和气候强迫研究中都具有重要的作用.通过对全球近90个气溶胶自动观测网(AERONET)的海洋站点数据进行筛选、分类和分析,发现了气溶胶模型的中值半径及其标准偏差间的负相关性,并给出了经验关系.利用该关系对现行中分辩率成像光谱仪(MODIS)海洋气溶胶模型进行了评估,并指出了该模型存在的不足...  相似文献   

15.
基于Madaline网络的气溶胶消光系数反演算法   总被引:2,自引:0,他引:2  
运用激光雷达监测气溶胶是大气环境监测的一项重要内容,通过激光雷达方程可以反演得到气溶胶消光系数,并进而获得气溶胶的其他特性。然而传统方法在反演气溶胶消光系数时需要很多假设,使得反演精度受到很大限制。提出了一种利用多层自适应线性(Madaline)人工神经网络来反演气溶胶消光系数的方法,通过对网络进行训练,可由激光雷达回波信号直接反演气溶胶消光系数,从而可有效避免传统方法的诸多假设。对比实验表明该方法使反演精度大大提高,获得了很好的反演结果。  相似文献   

16.
一类水体的标准大气校正算法利用两个近红外通道(748和869 nm)的辐射比值选择气溶胶模型,然后外推估算各波长的气溶胶贡献,实现离水反射率的反演。两个近红外通道的辐射探测值的不确定性会直接影响反演精度。从数学形式上研究近红外通道测量误差在大气校正中的传递机制,通过敏感性试验分析不同光学厚度和气溶胶模型条件下离水反射率的反演误差分布。结果表明,两个近红外通道的测量误差组合情况对反演结果精度影响程度不同,同号时误差较小,异号时误差较大;气溶胶模型中的细粒子组分越多,反演的误差越大;光学厚度越大,反演误差也越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号