首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探索高温高压周向均布4股贴壁燃气射流在受限空间中的扩展特性,设计了贴壁燃气射流在圆柱形充液室内扩展的实验装置,借助数字高速录像系统,观察了4股贴壁燃气射流在充液室中的扩展过程,发现由Kelvin-Helmholtz不稳定性引起的表面不规则一直存在于整个射流扩展过程;通过处理拍摄记录的射流扩展序列图,获得不同时刻射流扩展的轴向和径向位移; 对比了不同破膜喷射压力和喷孔结构参数对4股贴壁燃气射流扩展过程的影响。实验结果表明:喷孔面积越大,贴壁射流初期轴向扩展速度越大,但由于径向扩展达到交汇的时间较早,湍流掺混和干涉强烈,衰减也越快;破膜喷射压力越高,射流径向扩展到达交汇的时间越短; 破膜喷射压力从12 MPa升高到20 MPa,射流轴向扩展速度大幅增加,气液湍流掺混效应增强。  相似文献   

2.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

3.
Based on the linear analysis of stability, a dispersion equation is deduced which delineates the evolution of a general 3-dimensional disturbance on the free surface of an incompressible viscous liquid jet injected into a gas with swirl. Here, the dimensionless parameterJ e is again introduced, in the meantime, another dimensionless parameterE called as circulation is also introduced to represent the relative swirling intensity. With respect to the spatial growing disturbance mode, the numerical results obtained from solving the dispersion equation reveal the following facts. First, at the same value ofE, in pace with the changing ofJ e , the variation of disturbance and the critical disturbance mode still keep the same characters. Second, the present results are the same as that of S.P. Lin whenJ e >1; but in the range ofJ e <1, it's no more the case, the swirl decreases the axisymmetric disturbance, yet increases the asymmetric disturbance, furthermore the swirl may make the character of the most unstable disturbance mode changed (axisymmetric or asymmetric); the above action of the swirl becomes much stronger whenJ e ≪1. The project supported by the National Natural Science Foundation of China  相似文献   

4.
弹体高速入水特性实验研究   总被引:4,自引:0,他引:4  
进行了速度在35~160 m/s的平头、卵形和截卵形弹体入水实验,利用高速相机记录了弹体入水和空泡扩展的详细过程,得到了3种弹体在入水初期的水中弹道轨迹和空泡形状,并比较分析了弹体头部形状对入水弹道稳定性的影响.结果表明,平头弹体在水中飞行有良好的弹道稳定性,截卵形弹体往往由于受力不均衡在入水后期发生偏转,卵形弹体则在...  相似文献   

5.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
陈先锋  樊傲  袁必和  廖若愚  何松  代华明 《爆炸与冲击》2019,39(11):115401-1-115401-11

为了研制绿色环保高效的抑爆剂,以疏水型气相二氧化硅和去离子水为原料,采用机械搅拌法制备具有“固包液”结构的干水材料。利用20 L近球形爆炸装置测试干水材料对瓦斯爆燃的抑制效果。实验结果表明:当添加的干水材料较少(2 g和3 g)时,干水材料对瓦斯爆燃产生促进效果;当添加的干水材料大于4 g时,对瓦斯爆燃有抑制效果。通过研究不同粒径的干水材料对瓦斯爆燃的影响,发现干水材料的粒径对瓦斯爆燃最大压力的影响较小,但显著影响最大爆燃压力上升速率;对比不同类型改性干水材料对瓦斯爆燃的抑制效果,综合比较得出抑制效果由强到弱顺序为:尿素改性干水材料、磷酸二氢铵改性干水材料、聚磷酸铵改性干水材料、普通干水材料。

  相似文献   

7.
为了探索高温高压双股燃气射流在整装式液体工质中的扩展特性,设计了五级圆柱渐扩型观察室和圆柱型观察室,借助数字高速录像系统,观察了双股燃气射流在充液室中的扩展过程,对比了不同的观察室边界以及不同的参数条件对双股燃气射流扩展过程的影响。实验结果表明,圆柱渐扩型观察室结构更有助于改善气液的掺混特性,通过参数的合理匹配可以一定程度上控制双股燃气射流在三维充液室中的扩展过程。  相似文献   

8.
Direct contact condensation (DCC) of steam jet in subcooled water flow in a channel was experimentally studied. The main inlet parameters, including steam mass flux, water mass flux and water temperature were tested in the ranges of 200–600 kg/(m2 s), 7–18 × 103 kg/(m2 s), 288–333 K, respectively. Two unstable flow patterns and two stable flow patterns were observed via visualization window by a high speed camera. The flow patterns were determined by steam mass flux, water mass flux and water temperature, and the relationship between flow patterns and flow field parameters was discussed. The results indicated that whether pressure or temperature distributions on the bottom wall of channel could represent different flow patterns. And the position of pressure peak on the bottom wall could almost represent the condensation length. The upper wall pressure distributions were mainly dependent on steam and water mass flux; and the upper wall temperature distributions were affected by the three main inlet parameters. Moreover, the bottom wall pressure and temperature distributions of different unstable flow patterns had similar characteristics while those of stable flow patterns were affected by shock and expansion waves. The underlying cause of transition between different flow patterns under different inlet parameters was reflected and discussed based on pressure distributions.  相似文献   

9.
IntroductionJetreferstoamovingliquidstreamshotordrivenbymachineryfromanexitintoambientwaterbody .Iftheinitialdensityofthejetisn’tthesameasthatoftheambientfluid ,thejetwillmixwiththeambientwaterbodyanditsdensitywillchange.Whentwo (ormorethantwo)kindsofflu…  相似文献   

10.
Oil–water two-phase flow experiments were conducted in a 15 m long, 8.28 cm diameter, inclinable steel pipe using mineral oil (density of 830 kg/m3 and viscosity of 7.5 mPa s) and brine (density of 1060 kg/m3 and viscosity of 0.8 mPa s). Steady-state data on flow patterns, two-phase pressure gradient and holdup were obtained over the entire range of flow rates for pipe inclinations of −5°, −2°, −1.5°, 0°, 1°, 2° and 5°. The characterization of flow patterns and identification of their boundaries was achieved via observation of recorded movies and by analysis of the relative deviation from the homogeneous behavior. A stratified wavy flow pattern with no mixing at the interface was identified in downward and upward flow. Two gamma-ray densitometers allowed for accurate measurement of the absolute in situ volumetric fraction (holdup) of each phase for all flow patterns. Extensive results of holdup and two-phase pressure gradient as a function of the superficial velocities, flow pattern and inclinations are reported. The new experimental data are compared with results of a flow pattern dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. Prediction accuracies for oil/water holdups and pressure gradients are presented as function of pipe inclination for all flow patterns observed. There is scope for improvement for in particular dual-continuous flow patterns.  相似文献   

11.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

12.
运用全解耦流固耦合理论,建立了水射流冲击岩石介质流固耦合数值分析模型,给出了数值算法,计算分析了考虑和不考虑孔隙流体耦合效应对射流冲击岩石时应力分布的影响规律。结果表明,在射流冲击作用下,如不考虑孔隙流体耦合作用,最大拉应力位于冲击面,离冲击中心径向距离与喷距成正比,最大剪切应力位于岩石冲击中心下部约0.5倍喷嘴直径位置;如考虑孔隙流体耦合作用,最大拉应力位于岩石冲击中心下部约0.4倍喷嘴直径位置。数值分析结果可为水射流破岩机理研究中岩石破坏准则的选择提供依据。  相似文献   

13.
14.
The condensation of supersonic steam jet submerged in the quiescent subcooled water was investigated experimentally. The results indicated that the shape of steam plume was controlled by the steam exit pressure and water temperature. Six different shapes of steam plume were observed under the present test conditions. Their distribution as a function of the steam exit pressures and water temperatures was given. As the steam mass velocity and water temperature increase, the measured maximum expansion ratio and dimensionless penetration length of steam plume were in the ranges of 1.08–1.95 and 3.05–13.15, respectively. The average heat transfer coefficient of supersonic steam jet condensation was found to be in the range of 0.63–3.44 MW/m2K. An analytical model of steam plume was found and the correlations to predict the maximum expansion ratio, dimensionless penetration length and average heat transfer coefficient were also investigated.  相似文献   

15.
A numerical study has been carried out to investigate the gas flows in a micronozzle using a continuum model under both slip and no‐slip boundary conditions. The governing equations were solved with a finite volume method. The numerical model was validated with available experimental data. Numerical results of exit thrust showed good agreement with experimental data except at very low Reynolds numbers. For parametric studies on the effect of geometric scaling, the nozzle throat diameter was varied from 10 to 0.1 mm, whereas throat Reynolds number was varied from 5 to 2000. A correlation has also been developed to calculate the specific impulse at specified throat diameter and Reynolds number. The effect of different gases on the specific impulse of the nozzle, such as helium, nitrogen, argon and carbon dioxide, was also examined. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
运用自行研制的试验装置对淹没条件下的自激吸气式脉冲射流喷嘴特性进行了大量的试验,研究了吸气对喷嘴内的压力变化和脉冲射流峰值打击力的影响。通过研究淹没条件下10-16-125-75和8-14-85-60结构参数喷嘴在不同吸气根数下的腔套内各测点压力及峰值打击力的变化,得出不同结构喷嘴的压力和峰值打击力随吸气量的增大而逐渐提高,存在最优吸气量使脉冲射流峰值打击力最大。通过研究淹没条件下结构参数分别为8-14-85-60、10-16-105-75、14-28-125-105的喷嘴在不吸气及吸气根数为4情况下的射流峰谷差及峰值打击力,得出三种喷嘴在吸气时的射流峰值打击力分别提高45%~78%、40%~46%、22%~38%。研究表明:对于不同结构参数喷嘴,吸气可提高射流压力波动值和峰值打击力,随上喷嘴直径和振荡腔内容积的增大,该吸气方式对射流打击力的提高程度呈减小趋势。结果对进一步研究淹没条件下自激吸气式脉冲射流喷嘴特性具有指导意义。  相似文献   

17.
An annular liquid jet in a compressible gas medium has been examined using an Eulerian approach with mixed-fluid treatment. The governing equations have been solved by using highly accurate numerical methods. An adapted volume of fluid method combined with a continuum surface force model was used to capture the gas–liquid interface dynamics. The numerical simulations showed the existence of a recirculation zone adjacent to the nozzle exit and unsteady large vortical structures at downstream locations, which lead to significant velocity reversals in the flow field. It was found that the annular jet flow is highly unstable because of the existence of two adjacent shear layers in the annular configuration. The large vortical structures developed naturally in the flow field without external perturbations. Surface tension tends to promote the Kelvin–Helmholtz instability and the development of vortical structures that leads to an increased liquid dispersion. A decrease in the liquid sheet thickness resulted in a reduced liquid dispersion. It was identified that the liquid-to-gas density and viscosity ratios have opposite effects on the flow field with the reduced liquid-to-gas density ratio demoting the instability and the reduced liquid-to-gas viscosity ratio promoting the instability characteristics.  相似文献   

18.

为了研究大空间内预混可燃气体爆燃泄爆过程中的压力与火焰传播规律,在1.21 m3的方形空间内进行了不同体积分数乙烯气体和两种不同泄压面积的泄爆实验,针对泄压面积为0.18 m2、体积分数为7%的乙烯-空气预混气体爆燃泄爆过程进行了三维数值模拟研究。结果表明:不同泄爆条件下压力形式不同,小面积泄爆口开启后,压力先下降后上升且第2峰值较大,在高体积分数下超过第1峰值,大面积泄爆时第2峰值较小。数值模拟结果与实验得到的压力时程曲线趋势一致,与实验中观察到的外部火焰形态相似;泄爆口开启后引发的湍流效应,使得空间内火焰阵面变形和火焰传播速度显著加快,导致了小面积泄爆第2峰值压力较大。

  相似文献   

19.
通过开展单个容器和连通容器内预混气体的泄爆实验,分析连通条件下容器泄爆的压力变化和火焰传播过程。实验结果表明:连通容器内气体爆炸湍流燃烧,容器的最大泄爆压力和最大压力上升速率均超过单容器,特别是最大压力上升速率更高,差别更大;在等泄压比条件下,连通容器中传爆容器的最大泄爆压力比起爆容器高,且当传爆容器为小容器时,最大泄爆压力更高;随着管长的增加,传爆容器的最大泄爆压力增加,起爆容器的最大泄爆压力变化不大;连通容器泄爆过程,火焰在管道中加速传播。在相同管长条件时,小球容器向大球容器传爆的火焰传播速率高于大球容器向小球容器传爆的火焰速率。  相似文献   

20.
The ion composition of a plasma flow obtained by intense irradiation of a solid target is determined by methods of probing diagnostics and measuring the secondary emission rate. As the ions fly through a dense gas jet, C 5+ ions are found to recharge to C 4+ ions and then to C 3+ ions. The fraction of high-charge ions in the initial plasma flow and their concentration in the region of interaction with the jet are calculated. The concentration of atoms in the gas jet is estimated on the basis of the integral change in the charge value. Results necessary for analyzing the conditions of experiments on effective charge-transfer pumping and laser generation in the far ultraviolet spectral range are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 36–43, May–June, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号