首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to fluorescein 548 (F548) in a sodium dioctyl sulfosuccinate (AOT) reverse micelle is studied by picosecond and femtosecond emission spectroscopy. In bulk water, at the low concentration of the donor (C480) and the acceptor (F548), no FRET is observed. However, when the donor (C480) and the acceptor (F548) are confined in a AOT reverse micelle very fast FRET is observed. The time constants of FRET were obtained from the rise time of the emission of the acceptor (F548). In a AOT microemulsion, FRET is found to occur in multiple time scales--3, 200, and 2700 ps. The 3 ps component is assigned to FRET in the water pool of the reverse micelle with a donor-acceptor distance, 16 A. The 200 ps component corresponds to a donor-acceptor distance of 30 A and is ascribed to the negatively charged acceptor inside the water pool and the neutral donor inside the alkyl chains of AOT. The very long 2700 ps component may arise due to FRET from a donor outside the micelle to an acceptor inside the water pool and also from diffusion of the donor from bulk heptane to the reverse micelle. With increase in the excitation wavelength from 375 to 405 nm the relative contribution of the FRET due to C480 in the AOT reverse micelle (the 3 and 200 ps components) increases.  相似文献   

2.
Ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) to rhodamine 6G (R6G) is studied in a neutral PEO(20)-PPO(70)-PEO(20) triblock copolymer (P123) micelle and an anionic micelle (sodium dodecyl sulfate, SDS) using a femtosecond up-conversion setup. Time constants of FRET were determined from the rise time of the acceptor emission. It is shown that a micelle increases efficiency of FRET by holding the donor and the acceptor at a close distance (intramicellar FRET) and also by tuning the donor and acceptor energies. It is demonstrated that in the P123 micelle, intramicellar FRET (i.e., donor and acceptor in same micelle) occurs in 1.2 and 24 ps. In SDS micelle, there are two ultrafast components (0.7 and 13 ps) corresponding to intramicellar FRET. The role of diffusion is found to be minor in the ultrafast components of FRET. We also detected a much longer component (1000 ps) for intramicellar FRET in the larger P123 micelle.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123 (P123)) by picosecond and femtosecond emission spectroscopy. The time constants of FRET were obtained from the rise time of the acceptor (R6G) emission. In a P123 micelle, FRET occurs in multiple time scales: 2.5, 100, and 1700 ps. In the gel phase, three rise components are observed: 3, 150, and 2600 ps. According to a simple F?rster model, the ultrafast (2.5 and 3 ps) components of FRET correspond to donor-acceptor distance RDA=13 +/- 2 A. The ultrafast FRET occurs between a donor and an acceptor residing at close contact at the corona (PEO) region of a P123 micelle. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET ( approximately 3 ps) increases from 13% to 100% in P123 micelle and from 1% to 100% in P123 gel. It is suggested that at lambdaex = 435 nm, mainly the highly polar peripheral region is probed where FRET is very fast due to close proximity of the donor and the acceptor. The 100 and 150 ps components correspond to RDA = 25 +/- 2 A and are ascribed to FRET from C480 deep inside the micelle to an acceptor (R6G) in the peripheral region. The very long component of FRET (1700 ps in micelle and 2600 ps component in gel) may arise from diffusion of the donor from outside the micelle to the interior followed by fast FRET.  相似文献   

4.
Solvation dynamics of coumarin 480 (C480) in the secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied using femtosecond up-conversion. The secondary aggregate resembles a long (approximately 40 A) hollow cylinder with a central water-filled tunnel. Different regions of the aggregate are probed by variation of the excitation wavelength (lambdaex) from 375 to 435 nm. The emission maximum of C480 displays an 8 nm red shift as the lambdaex increases from 345 to 435 nm. The 8 nm red edge excitation shift (REES) suggests that the probe (C480) is distributed over regions of varied polarity. Excitation at a short wavelength (375 nm) preferentially selects the probe molecule in the buried locations and exhibits slow dynamics with a major (84%) slow component (3500 ps) and a small (16%) contribution of the ultrafast component (2.5 ps). Excitation at lambdaex=435 nm (red end) corresponds to the exposed sites where solvation dynamics is very fast with a major (73%) ultrafast component (相似文献   

5.
In this contribution we report studies of the nature of solvation and resonance energy transfer processes in a reverse micelle (RM) upon encapsulation of a digestive enzyme, alpha-chymotrypsin (CHT). We have used one donor, Coumarin 500 (C500), and three acceptors Rhodamine 123 (R123, cationic), ethidium bromide (EtBr, cationic), and Merocyanine 540 (MC540, anionic). By selectively exciting the donor at the surface of the RM with a proper excitation wavelength we have examined solvation dynamics in the microenvironment. The solvation correlation function in the RM without CHT exhibits single-exponential decay with time constant approximately 660 ps, which is similar to that of the CHT-included RM. However, in the case of CHT-included RM (w(0)=10), the time-resolved anisotropy and spectral linewidth analysis of the surface-bound donor reveal the existence of an annular aqueous channel of thickness approximately 2.5 A between the enzyme surface and the inner surface of the RM. The aqueous channel is a potential host for the water-soluble substrate and also is involved in maintaining the proper functionality of RM encapsulated CHT. The studies use both steady-state and time-resolved fluorescence resonance energy transfer (FRET) techniques to measure donor-acceptor distances in the RM and also emphasize the danger of using steady-state fluorescence quenching as a method in careful estimation of the distances. The local geometrical restriction on the donor and acceptor molecules was estimated from time-resolved polarization (anisotropy) measurements. The time-resolved anisotropy of the donor and acceptor molecules also revealed significant randomization of the relative orientation of transition dipoles of the donor and acceptor, justifying the use of 2/3 as the value of the orientation factor kappa2. These studies attempt to elucidate the excellence of the RM as a nanohost of biological macromolecules.  相似文献   

6.
7.
A homogeneous continuous-flow assay using fluorescence resonance energy transfer (FRET) for detection was developed to measure the hydrolysis of HIV Protease Substrate 1 (to which two choromophores, EDANS and DABCYL are covalently attached) by a protease (e.g. Subtilisin Carlsberg) and the influence of inhibitors. In the continuous-flow assay, an inhibitor solution and an enzyme solution were first eluted into the system and allowed to react with each other in a reaction coil. Subsequently, the substrate solution was added to an enzyme-inhibitor mixture in a second reaction coil and incubated for 1 min. Finally, the fluorescence intensity was monitored.The system was also utilized to measure the inhibition of the protease by two weak acidity inhibitors which are 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) and ethylenediaminetetraacetic acid (EDTA). Using the obtained optimum conditions for AEBSF, a detection limit of 0.3 mmol/l was achieved and the relative standard deviation was below 3.7% in the 2.5-7.5 mmol/l range. For EDTA, which required a 20 times higher substrate concentration than AEBSF, a detection limit of 0.2 mmol/l was obtained and the relative standard deviation was below 9.6% in the 0.5-7.5 mmol/l range.The optimization of pH, substrate concentration, enzyme concentration, reaction time and temperature are described. Organic modifier effects were also investigated. Methanol, acetonitrile and DMSO could be tolerated up to 30%.  相似文献   

8.
9.
We present the results of molecular modeling of dye-labeled, double-stranded DNA. The structural information obtained from the simulations are used as input to an analysis of energy transfer in this system. The simulations reveal the nature of the interaction between a pair of fluorophores and DNA. The donor, tetramethylrhodamine, TMR, attached to the 5′-end of DNA with a six-carbon tether, interacts primarily with DNA's minor groove, but occasionally stacks against the DNA base pairs. The acceptor, Cy5, attached to the opposite strand at positions n (n = 7, 12, 14, 16, 19, 24, 27), binds in the major groove in two distinct locations on the upper and lower part of the groove. We analyzed in detail the dye-to-dye distances, dipole orientation factors and fluorescence resonance energy transfer (FRET) rates. Tests of the validity of the Förster model were conducted using the transition density cube (TDC) method, which provides the exact Coulombic interaction within a certain model chemistry. Our studies show that the use of long tethers does not guarantee rotational freedom of the dyes, as intended in the experiments. Instead, the tethers allow Cy5 to bind in two different geometries, which causes a large uncertainty in the dye-to-dye distances. Our results also show significant fluctuation in the orientation factor, κ2, which, together with uncertainty in dye-to-dye distances, cause considerable uncertainty in interpreting FRET measurements. We suggest that molecular modeling, combined with the TDC method, provides a useful tool in designing and interpreting FRET experiments.  相似文献   

10.
Shan Hu 《Talanta》2009,80(2):454-12607
A novel method to significantly enhance fluorescence resonance energy transfer (FRET) signal which occurred from fluoresceine isothiocyanate (FITC) to Dylight 549 was studied in this paper. Streptavidin was labeled with the donor fluorophore FITC and biotinamide was conjugated to the acceptor Dylight 549. When biotinamide bound to streptavidin, FRET would occur from FITC to Dylight 549 while a remarkable fluorescence enhancement of streptavidin-FITC was observed. The fluorescence enhancement of streptavidin-FITC in the presence of biotin was utilized in the FRET system to obtain higher fluorescence signal. Increase of fluorescence intensity of FITC and decrease of Dylight 549 depended on the concentration of competitive biotin. A homogeneous analysis method was established based on the fluorescence recovery of FITC in the FRET system with fluorescence enhancement. This method is highly sensitive and simple to determine the concentration of biotin. The detection limit for biotin was 0.5 nM and the linear range of the assay was 0.8-9.8 nM. The response time is no more than 15 min during the one-step assay due to the high affinity between streptavidin and biotin.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO22+)‐specific 39E DNAzyme in the presence of Mg2+, Zn2+, Pb2+, or UO22+. At pH 5.5 and physiological ionic strength (100 mM Na+), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg2+ or Zn2+. However, no folding occurred in the presence of Pb2+ or UO22+; this is analogous to the “lock‐and‐key” catalysis mode first observed in the Pb2+‐specific 8–17 DNAzyme. However, Mg2+ and Zn2+ exert different effects on the 8–17 and 39E DNAzymes. Whereas Mg2+ or Zn2+‐dependent folding promoted 8–17 DNAzyme activity, the 39E DNAzyme folding induced by Mg2+ or Zn2+ inhibited UO22+‐specific activity. Group IIA series of metal ions (Mg2+, Ca2+, Sr2+) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr2+ (1.12 Å) is comparable to that of Pb2+ (1.20 Å), but contrary to Pb2+, Sr2+ induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb2+ and UO22+. Under low ionic strength (30 mM Na+), all four metal ions (Mg2+, Zn2+, Pb2+, and UO22+), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA‐backbone phosphates in addition to playing specific catalytic roles. Mg2+ at low (<2 mM ) concentration promoted UO22+‐specific activity, whereas Mg2+ at high (>2 mM ) concentration inhibited the UO22+‐specific activity. Therefore, the lock‐and‐key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock‐and‐key mode only at ionic strengths of 100 mM or greater.  相似文献   

12.
The use of F?rster or fluorescence resonance energy transfer (FRET) as a spectroscopic technique has been in practice for over 50 years. A search of ISI Web of Science with just the acronym "FRET" returns more than 2300 citations from various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting and metallic nanomaterials. The advent of new classes of fluorophores including nanocrystals, nanoparticles, polymers, and genetically encoded proteins, in conjunction with ever more sophisticated equipment, has been vital in this development. This review gives a critical overview of the major classes of fluorophore materials that may act as donor, acceptor, or both in a FRET configuration. We focus in particular on the benefits and limitations of these materials and their combinations, as well as the available methods of bioconjugation.  相似文献   

13.
Polarized fluorescence spectroscopy is used to investigate the photophysical behavior of poly(p-phenylphenylenevinylene) (PPPV) in polystyrene matrix in comparison with oligomeric model compounds. For this purpose PPPV is modeled by a chain consisting of a distribution of independent oligomeric segments. Excitation energy transfer (EET) between the segments depends on the wavelength of excitation, not only for transfer along an isolated polymer chain, but also for intermolecular transfer at high concentration of PPPV. The spatial range of EET, as indicated by fluorescence depolarization, is reduced for excitation at the long wavelength edge of the absorption spectrum (“red-edge-effect”). © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Solid-emissive rhodamine complexes are obtained by mixing commercial rhodamine B (RhB) with the recently developed solid-emissive boron 2-(2′-pyridyl)imidazole (BOPIM) derivatives. The formation of intermolecular hydrogen bonds between RhB and BOPIM dyes plays a key role in the emission of RhB in the solid state. The disappearance of emissions from BOPIM dyes indicates the occurrence of efficient intermolecular fluorescence resonance energy transfer (FRET). The hydrogen bond also helps prevent the intermolecular interaction between the carboxyl moieties on RhB to alleviate concentration-induced fluorescence quenching because the emission of the complexes can be directly lightened by excitation at the RhB absorption (510 nm). Our results indicate that intermolecular FRET assisted by non-covalent interactions can be an efficient tool for constructing red or near-infrared solid emitters.  相似文献   

15.
16.
Summary The migration of excitation within a small flat molecular aggregate composed of identical molecules is described using a Davidov-like model and a mechanism of excitation transfer of Förster type. We consider in this model the changes that take place in the equilibrium position of each molecule upon excitation and construct energy surfaces that describe paths, that is, conditions for excitation localization and transfer that govern, in first-order, the motion of excitation within the aggregate.Presented in part at XVIII Jornadas Chilenas de Química, Santiago, 1989  相似文献   

17.
A novel fluorescent probe for metal cations, which has a large Stokes shift, was synthesized from the reaction of N-(3-carboxy-2-naphthyl)-ethylenediamine-N,N′,N′-triacetic acid (CNEDTA) with 4-(N,N-dimethylaminosulfonyl)-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DBD-ED). The large Stokes shift is due to the FRET phenomenon between a donor (CNEDTA) and an acceptor (DBD-ED) fluorophore. When the fluorescent probe, DBD-ED-CNEDTA, was excited at 240, 340 and 440 nm, an emission maximum was observed only at 560 nm. However, the fluorescence (FL) at 480 nm, based upon the CNEDTA moiety, was not detected with excitation at 340 nm. The FL intensity of DBD-ED-CNEDTA was dependent upon the acidity of the medium and highest at pH 4.1. DBD-ED-CNEDTA reacted with metal cations, i.e., Zn, Cd, Al, Y, and La, in aqueous medium to form chelates. The spectral change of FL excitation and emission was small before and after the addition of the metal ions. However, the FL intensity was dependent upon the concentrations of the metal ions. In the case of Zn2+, the molar ratio bound with DBD-ED-CNEDTA was calculated as 1:1. The FL intensities after chelate formation of Zn/DBD-ED-CNEDTA (1:1) were enhanced by 3.8-fold (excitation at 340 nm, emission at 560 nm), 4.2-fold (excitation at 440 nm, emission at 560 nm), and 5.9-fold (excitation at 240 nm, emission at 560 nm), respectively. The FL probe was applied to the determination of Zn in a food supplement.  相似文献   

18.
19.
为实现蔬菜中多种元素的快速检测,利用单波长激发-能量色散X射线荧光光谱仪(MW-EDXRF),建立了蔬菜中As、Pb、Cd、Cr、Ni、Cu、Zn、Rb、Mn等元素的快速检测方法。对XRF的激发时间、载样量、样品压片等条件进行了优化,结果显示当累积激发时间达到600 s、载样量为2 g、样品压片15 Mpa保持60 s时,可以实现XRF最优检测性能。在最优条件下,As、Pb、Cd、Cr、Ni、Cu、Zn、Rb、Mn的检出限(LOD)分别为0.07 mg/kg、0.07 mg/kg、0.07 mg/kg、0.32 mg/kg、0.32mg/kg、1.2 mg/kg、0.4 mg/kg、0.08 mg/kg、0.3 mg/kg;对菠菜、葱、胡萝卜、豆角、番茄、姜、空心菜、莲藕、芹菜、蒜等蔬菜样品测定11次的相对标准偏差(RSD)在3%~10%,表明方法具有良好的精密度;测定5种蔬菜基体标准物质的回收率在93%~119%,与微波消解电感耦合等离子体质谱法(ICP-MS)测定结果对比的线性回归系数(R2)>0.99(Cu的R2=0.9838),表明方法具有良好的检测准确度。同时,该仪器仅有不到10 kg,不需要样品消解处理,检测时间在10 min左右,非常适合蔬菜多种重金属的现场快速筛查。  相似文献   

20.
Liquid chromatography (LC) was coupled on-line to a homogeneous continuous-flow protease assay using fluorescence resonance energy transfer (FRET) as a readout for the screening of inhibitors of an enzyme (e.g., Subtilisin Carlsberg). The inhibitors aprotinin (a protein of approximately 6500 g/mol) and 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF, 240 g/mol) were mixed with other, non-active compounds and separated on a size-exclusion chromatography column. After the separation, the analytes were eluted to the postcolumn reactor unit where the enzyme solution and subsequently the FRET peptide substrate were added; by measuring the fluorescence intensity the degree of inhibition was monitored on-line. As expected, only the two inhibitors caused a change in the FRET response. Detection limits for aprotinin were 5.8 microM in the flow injection analysis (FIA) mode and 12 microM in the on-line LC mode. System validation was performed by determining IC50 values for aprotinin for the FIA mode (19 microM) and the on-line mode (22 microM). These IC50 values were in line with the value determined in batch experiments (25 microM). With this system, chemical information (i.e., chromatographic retention time) and biological information (i.e., enzyme inhibition) can be combined to characterize mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号