首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用有限元法计算径流式叶轮机械蜗壳的紊流时均流场.有关紊流模型采用K-ε两方程模型,用关于压力p的罚函数方法求解.所得结果可供分析蜗壳流场用.文中方法也可用于计算其他形状的二维通道流动.  相似文献   

2.
Several studies of enclosed turbulent flows within rotating discs or cylinders (e.g. [6, 7]) have revealed that, while the geometry may be strictly axisymmetric, it is possible for non-axisymmetric flow patterns to be created within the space. Here we report a visualization study off low induced in the cavity formed between two discs, one rotating, the other stationary. This is an idealization of the flow configuration that occurs between successive stages in the `hot section' of a gas turbine. Such rotor-stator cavities have hitherto been regarded as creating asymmetric flow pattern but Owen [8] has conjectured that the failure to predict heat transfer coefficients accurately for certain radius-to-height ratios may indicate that here, too, organized rotating vortex structures were playing a crucial role. The present study has made an experimental visualization of this flow over a range of conditions in order to test this conjecture and to help guide future numerical explorations. The apparatus comprised a rotating disc over which is fitted a Perspex stationary disc and shroud. The lower disc was rotated for a number of distinct speeds between 30 and 120 rpm and for two ratios of gap-height to radius (H/R). The spin Reynolds number based on gap height and maximum rotational speed, ρΩRh/μ, ranged from 3.7 × 10E4 to 2.24 × 10E5. The flow structures were visualized by injecting ink through a small hypodermic tube at various radii and depths within the cavity and recording the ensuing dye streaks with a video camera mounted above the discs. The results show that, for a wide range of conditions,structured flow with large-scale vortices does indeed arise, the number of vortices diminishing as the spin Reynolds number is increased. The two-vortex S-shaped pattern is stable over a wide range of conditions but three, five and seven vortices have also been observed. These results suggest that an accurate numerical simulation of the flow within rotor-stator disc cavities may require unsteady,three-dimensional CFD modelling over at least certain ranges of flow parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The transitional turbulent regime in confined flow between a rotating and a stationary disc is studied using direct numerical simulation. Besides its fundamental importance as a three-dimensional prototype flow, such flows frequently arise in many industrial devices, especially in turbomachinary applications. The present contribution extends the DNS simulation into the turbulent flow regime, to a rotational Reynolds number Re =3 × 105. An annular rotor-stator cavity of radial extension ΔR and height H, is considered with L = 4.72(L = ΔR/H) and Rm = 2.33 (Rm = (R 1+ R 0)/ΔR). The direct numerical simulation is performed by integrating the time-dependent Navier–Stokes equations until a statistically steady state is reached. A three-dimensional spectral method is used with the aim of providing both very accurate instantaneous fields and reliable statistical data. The instantaneous quantities are analysed in order to enhance our knowledge of the physics of turbulent rotating flows. Also, the results have been averaged so as to provide target turbulence data for any subsequent modelling attempts at reproducing the flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper presents results obtained within the scope of a collaboration between the “Laboratoire de Mécanique et d'Acoustique” (Marseille, France), the “Laboratoire de Mécanique des Fluides et d'Acoustique” of the Ecole Centrale (Lyon, France) and the “Laboratoire de Vibrations et d'Acoustique” of the Institut National des Sciences Appliquées (Lyon, France). The main aspect of this collaboration is to establish a comparison between a measured and a model vibro-acoustics response of a thin cylindrical pipe excited by a turbulent internal flow. After a brief review of the literature, a model of the response of the shell, based on a matched asymptotic expansion, is given. Some numerical results are also given. The spectral density of the acceleration of the shell is compared with experimental results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper we report on a fourth-order, spectro-consistent simulation of a complex turbulent flow. A spatial discretization of a convection-diffusion equation is termed spectro-consistent if the spectral properties of the convective and diffusive operators are preserved, i.e. convection skew-symmetric; diffusion symmetric positive definite. We consider a fully developed flow in a channel, where a matrix of cubes is placed at a wall of the channel. The Reynolds number (based on the channel width and the mean bulk velocity) is equal to Re = 13,000. The three-dimensional flow around the surface mounted cubes has served at a test case at the 6th ERCOFTAC/IAHR/COST workshop on refined flow modeling (Delft, June 1997). Here, mean velocity profiles as well as Reynolds stresses at various locations in the channel have been computed without using any turbulence models. The results agree well with the available experimental data.  相似文献   

6.
离心泵叶轮内宾汉流体湍流流场的数值计算   总被引:8,自引:0,他引:8  
考虑宾汉流体本构关系特点,建立了任意曲线坐标系(ζ,η)下宾汉流体湍流流动的基本方程,应用压力加权校正算法,实现了速度场和压力场的关联,采用交错网格技术,解决了非物理压力振荡问题,在此基础上,对离心泵叶轮内回转面上宾汉流体湍流流动进行了数值模拟,并分析探讨了离心泵叶轮内宾汉流体湍流流动机理。  相似文献   

7.
DNS of the Turbulent Channel Flow of a Dilute Polymer Solution   总被引:1,自引:0,他引:1  
A direct numerical simulation of the turbulent channel flow of a dilute polymer solution has been performed in order to compare its turbulence statistics with those obtained in a Newtonian channel flow. The viscoelastic flow has been simulated by solving the whole set of continuity, momentum and constitutive equations for the six independent components of the extra-stress tensor induced by polymer addition. The Finitely Extensible Nonlinear Elastic dumbbell model was adopted in order to simulate a non-linear modulus of elasticity and a finite extendibility of the polymer macromolecules. Simulations were carried out under the narrow channel assumption at a Reynolds number of 169 based on the channel half height and on the friction velocity; they showed a significant reduction in drag, dependent on the influence of the elastic properties of the chains. A qualitative comparison with experiments at a higher Reynolds number has shown that the model here adopted is capable of reproducing all the main features of the polymer solution flow. Analysis of the turbulence statistics suggests that a dilute polymer solution can affect the intensity of the streamwise vortices, leading to an increase in the spacing between low speed streaks and eventually to a turbulent shear stress reduction.  相似文献   

8.
Over the past 15 years direct numerical simulations (DNS) of turbulent flow and particle image velocimetry (PIV) have provided the opportunity to obtain information about a turbulent velocity field simultaneously at a large number of locations. This paper gives a personal viewpoint of how these techniques are providing new insights about the Reynolds stress producing structures in turbulence generated by flow over a smooth boundary. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
分块隐式有限差分法计算弯管紊流   总被引:6,自引:0,他引:6  
本文利用贴体坐标系中分块隐式有限差分法计算矩形截面90°弯管中不可压恒定紊流.在计算中,雷诺方程的数值离散采用混合差分格式,局部联立求解雷诺方程和连续方程而得到速度压力解.在全流场的迭求解过程中采用对称联立Gauss—Seidel法.利用标准K-ε紊流模型模拟紊流.计算结果与有关试验进行了对比.  相似文献   

10.
We consider the chemical reaction in a turbulent flow for the case that the time scale of turbulence and the time scale of the reaction are comparable. This process is complicated by the fact that the reaction takes place intermittently at those locations where the species are adequately mixed. This is known as spatial segregation. Several turbulence models have been proposed to take the effect of spatial segregation into account. Examples are the probability density function (PDF) and the conditional moment closure (CMC) models. The main advantage of these models is that they are able to parameterize the effects of turbulent mixing on the chemical reaction rate. As a price several new unknown terms appear in these models for which closure hypothesis must be supplied. Examples are the conditional dissipation 〈 χ ∣ φ 〉, the conditional diffusion 〈 κ ∇2 φ ∣ u, φ 〉 and the conditional velocity 〈 u ∣ φ 〉. In the present study we investigate these unknown terms that appear in the PDF and CMC model by means of a direct numerical simulation (DNS) of a fully developed turbulent flow in a channel geometry. We present the results of two simulations in which a scalar is released from a continuous line source. In the first we consider turbulent mixing without chemical reaction and in the second we add a binary reaction. The results of our simulations agree very well with experimental data for the quantities on which information is available. Several closure hypotheses that have been proposed in the literature, are considered and validated with help of our simulation results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Augmentation of heat transfer from a flat plate using a turbulence promoter has been studied. A circular cylinder 8 mm in diameter was placed in the turbulent boundary layer detached from the flat plate. It was located parallel to the plate and perpendicular to the flow direction. Clearance, c, between the cylinder and the flat plate was varied in nine steps: c=0, 1, 2, 3, 4, 6, 11, 20 and 29.5 mm. Measurements were made of the local heat transfer coefficients, mean velocity profiles, turbulence intensity profiles, static pressure and skin friction. Experimental results showed that the heat transfer deterioration which occurs just downstream of the cylinder at c=0 mm can be removed by displacing the cylinder a small distance from the wall. The improvement in heat transfer is mainly due to the unsteadiness of the recirculating flow on the plate and the effect of intense turbulence arriving at the near wall region from the lower shear layer of the cylinder wake. Heat transfer augmentation is most effective when c=4 mm and becomes less effective when c is increased more than 6 mm. The enhancement disappears far downstream from the cylinder.  相似文献   

13.
The process of vortex formation in a cavity with inclined walls, which has a moderate aspect ratio, is experimentally studied, and the distribution of pressure coefficients is measured. The angle of inclination of the side walls ϕ is varied from 30 to 90°. It is found that the flow in the cavity becomes unstable in the range of inclination angles ϕ = 60–70°. Flow reconstruction occurs, which substantially alters the surface-temperature and static-pressure distributions. Large changes in these characteristics and their nonuniform distributions for these angles are observed across the cavity on its frontal wall and on the bottom. For small angles (ϕ = 30 and 45°), the pressure on the rear wall drastically increases, which leads to a small increase in pressure averaged over the entire cavity surface. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 68–76, September–October, 2006.  相似文献   

14.
The mechanisms of laminarization in wall-bounded flows have been investigated by performing direct numerical simulations (DNS) of turbulent channel flows. By decreasing Reynolds numbers systematically, the effects of the low Reynolds number are studied in connection with the near-wall turbulent structure and turbulent statistics. At approximately the critical Reynolds number, the turbulent skin friction is reduced, and the turbulent structure changes qualitatively in the very near-wall region. Instantaneous turbulent structures reveal that streamwise vortices, the cores of which are at y+ 10, disappear, although low speed streaks and Reynolds shear stress are still produced by larger streamwise vortices located in the buffer region y+ > 10. Sweep motions induced by these vortical structures are shifted toward the center of a channel and also significantly deterred, which may heighten the effects of the viscous sublayer over most of the channel section and suppress the regeneration mechanisms of new streamwise vortices in the very near-wall region. To investigate the details of how large-scale coherent vortices affect the viscous sublayer and the relevant small-scale streamwise vortices, a body force is virtually imposed in the wall-normal direction to enhance the large streamwise vortices. As a result, it is found that when they are sufficiently enhanced, the small-scale vortices reappear, and the sweep events are again dominant in the viscous sublayer.  相似文献   

15.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


16.
离心风机子午通道内湍流场数值模拟   总被引:6,自引:0,他引:6  
由进风口-叶轮-无叶扩压器-蜗壳等部件组成的离心风机通道内流分析是非常复杂的,目前还只能是分别计算各部件内的流场,但必须考虑部件间的相互影响。本文采用轴对称N-S方程,根据三维叶轮通道计算给出的叶片力分布,求解了考虑叶片力的进风口-叶轮-无叶扩压器组成的子午通道问题,所得结果可用来给出三维叶轮通道计算的进口条件,并可用于优化设计进风口及叶轮前、后盘形状。该方法已得到实践检验。  相似文献   

17.
The present article is concerned with the influence of turbulent gas-velocity fluctuations on both droplet dispersion and droplet-gas slip velocity in the context of spray simulation. The role of turbulence in generating slip and thus enhancing interphase heat and mass transfer has so far received little attention and is investigated in this work. A model for turbulent gas-velocity fluctuations along droplet trajectories is presented and is first tuned to reproduce elementary dispersion phenomena. It is then shown to give good results for more general dispersion problems as well as for slip velocities. As a fundamental source of information and for the purpose of model validation and comparison, direct numerical simulation (DNS) of droplet motion in homogeneous isotropic steady turbulence (HIST) is used. Dispersion of “injected” droplets (i.e. droplets under the influence of drift due to high injection velocity) as well as slip velocities for linear and nonlinear droplet drag are studied, and reasonable agreement is found with the model. The distributions of the slip velocity are found to be very similar for linear and highly nonlinear drag law. The present model is also used to investigate the influence of turbulence on droplet penetration. Comparison is made with an eddy-interaction model (the KIVA-2 model), which reveals various weaknesses of this model, in particular the underprediction of average slip velocity. The influence of slip due to turbulence on vaporization is shown for a fuel spray injected into a premix gas-turbine combustor. The classical eddy-interaction model is seen to underestimate the rate of vaporization due to the underprediction of slip. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
本文应用二维双色四光束激光多普勒测速仪和压强探针样细地测量了二维非对称曲面扩张通道内的不可压湍流边界层分离流动,得到了时均速度和雷诺剪应力以及正反向间歇流动因子和静压分布。实验结果分析表明;湍流边界层分离时,沿边界层高度方向存在着明显的压强差。压强差的极小值对应于位移厚度曲率的极大值和瞬时间歇分离点。Bardina对数尾迹律可以较好地描述瞬时间歇分离点之前的边界层速度分布,但无法描述分离的边界层速  相似文献   

19.
Data collected from several studies of experimental and numerical nature in wall-bounded turbulent flows and in particular in internal flows (channel and pipe flows, Mochizuki and Nieuwstadt [1]) at different Reynolds numbers R +(Ru */ν), indicate that: (i) the peak of the rms-value (normalized by u *) of the streamwise velocity fluctuations (σ u +|peak) is essentially independent of the Reynolds number, (ii) the position of the rms peak value (y +|peak) is weakly dependent of the Reynolds number, (iii) the skewness of the streamwise velocity fluctuations (S u ) is close to zero at the position in which the variance has its peak. A series of measurements of streamwise velocity fluctuations has been performed in turbulent pipe flow with the use of an Ultrasonic Doppler Velocimeter and our results support those reported in [1]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A direct numerical simulation of turbulent channel flow with an imposed mean scalar gradient is analyzed with a focus on passive scalar flux modelling and in particular the treatment of the passive scalar dissipation equation. The Prandtl number is 0.71 and the Reynolds number based on the wall friction velocity and the channel half width is 265. Budgets are presented for the passive scalar variance and its dissipation rate, as well as for the individual scalar flux components. These form a basis for a discussion of modelling issues related to explicit algebraic scalar flux modelling. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号