首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable temperature (-55 to -145 degrees C) studies of the infrared spectra (3500 to 100 cm(-1)) of ethylamine, CH(3)CH(2)NH(2), dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 54 +/- 4 cm(-1) (0.65 +/- 0.05 kJ/mol), with the trans conformer (methyl group relative to the lone pair of electrons on nitrogen) being the more stable form. It is estimated that there is 61 +/- 1% of the doubly degenerate gauche form present at ambient temperature. The conformational energetics have been calculated with the M?ller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method utilizing a variety of basis sets. Basis sets with diffuse functions lead to incorrect prediction of the conformational stability. On the basis of the frequencies of the torsional transitions along with the determined experimental enthalpy difference and gauche dihedral angle, the potential function governing conformational interchange has been obtained, and the determined Fourier cosine coefficients are V(1) = -207 +/- 48, V(2) = 320 +/- 67, V(3) = 1072 +/- 25, V(4) = 55 +/- 11, and V(5) = -96 +/- 28 cm(-1), with a trans-to-gauche barrier of 1286 cm(-1), and a gauche-to-gauche barrier of 715 cm(-1). The 3-fold methyl rotational barriers have been determined to be 1241 +/- 4 and 1281 +/- 10 cm(-1) for the gauche and trans conformers, respectively. By utilizing the previously reported microwave rotational constants combined with the structural parameters predicted at the MP2(full)/6-311+ G(d,p) level, adjusted r(0) structural parameters have been obtained. A complete vibrational assignment is given for the trans conformer, which is supported by normal coordinate calculations utilizing scaled force constants from ab initio B3LYP/6-311++G(3df,3pd) calculations. Proposed assignments are also made for the fundamentals of the gauche conformer. The results of these spectroscopic and theoretical studies are discussed and compared to the corresponding results for similar molecules.  相似文献   

2.
We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar molecules cyclohexane (C(6)H(12)) and cyclohexane-d(12) (C(6)D(12)). We measured the rotational B(0) and centrifugal distortion constants D(J), D(JK) of the v = 0 states of C(6)H(12) and C(6)D(12) to high accuracy, for example, B(0)(C(6)H(12)) = 4306.08(5) MHz, as well as B(v) for the vibrationally excited states ν(32), ν(6), ν(16) and ν(24) of C(6)H(12) and additionally ν(15) for C(6)D(12). To successfully reproduce the experimental RCS transient, the overtone and combination levels 2ν(32), 3ν(32), ν(32) + ν(6), and ν(32) + ν(16) had to be included in the RCS model calculations. The experimental rotational constants are compared to those obtained at the second-order M?ller-Plesset (MP2) level. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows determination of accurate semiexperimental equilibrium structure parameters, for example, r(e)(C-C) = 1.526 ± 0.001 ?, r(e)(C-H(axial)) = 1.098 ± 0.001 ?, and r(e)(C-H(equatorial)) = 1.093 ± 0.001 ?. The equilibrium C-C bond length of C(6)H(12) is only 0.004 ? longer than that of ethane. The effect of ring strain due to the unfavorable gauche interactions is mainly manifested as small deviations from the C-C-C, C-C-H(axial), and C-C-H(equatorial) angles from the tetrahedral value.  相似文献   

3.
The rotational spectra of the main isotopomer, of the (29)Si and of all (13)C isotopologues of axial and equatorial forms of 1-fluoro-silacyclohexane have been measured by conventional (only main species) and molecular beam Fourier transform microwave spectroscopy. r(0) and partial r(s) structures are given separately for the two forms. The main structural differences are discussed. From dipole moments and relative intensity measurements, a slight preference (E(Eq) - E(Ax) = 42 +/- 24 cm(-1)) for the axial conformer was found. The rotational spectra of some, the most intense, vibrational satellites have also been measured. They belong to the ring-puckering motions.  相似文献   

4.
The conformational landscape of the alkaloid anabasine (neonicotine) has been investigated by using rotational spectroscopy and ab initio calculations. The results allow a detailed comparison of the structural properties of the prototype piperidinic and pyrrolidinic nicotinoids (anabasine vs. nicotine). Anabasine adopts two most stable conformations in isolation conditions, for which we determined accurate rotational and nuclear quadrupole coupling parameters. The preferred conformations are characterized by an equatorial pyridine moiety and additional N–H equatorial stereochemistry at the piperidine ring (eq‐eq; eq=equatorial). The two rings of anabasine are close to a bisecting arrangement, with the observed conformations differing by an approximately 180° rotation of the pyridine subunit, denoted either syn or anti. The preference of anabasine for the eq‐eq‐syn conformation has been established by relative intensity measurements (syn/anti~5(2)). The conformational preferences of free anabasine are directed by a weak N???H? C hydrogen bond interaction between the nitrogen lone pair at piperidine and the closest C? H bond in pyridine, with N???H distances ranging from 2.686 (syn) to 2.667 Å (anti). Supporting ab initio calculations by using MP2 and the recent M05‐2X density functional are provided, evaluating the predictive performance of both methods.  相似文献   

5.
Variable temperature (-55 to -100 degrees C) studies of the infrared spectra (4000-400 cm(-1)) of cyclobutanol, c-C4H7OH dissolved in liquid xenon have been carried out. The infrared spectrum (4000-100 cm(-1)) of the gas has also been recorded. From these data two of the four possible stable conformers have been confidently identified and their order of stabilities has been experimentally determined where the first indicator is for the position of attachment of the hydroxyl group on the bent cyclobutyl ring (Eq=equatorial or Ax=axial) and the second one (t=trans, g=gauche) is the relative position of the hydroxyl rotor, i.e. rotation around the ring C-O bond. The enthalpy difference between the most stable Eq-t conformer and the second most stable rotamer, Eq-g, has been determined to be 200+/-50 cm(-1) (2.39+/-0.60 kJ/mol). This experimentally determined order is consistent with the order of stability predicted by ab initio calculations Eq-t>Eq-g>Ax-g>Ax-t. Evidence was obtained for the third conformer Ax-g which is predicted by ab initio calculations to be less stable by more than 650cm(-1) than the Eq-t form. The percentage of each conformer at ambient temperature is estimated to be Eq-t (50%), Eq-g (47%) and Ax-g (3%). The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for all of the conformers from MP2(full)/6-31G(d) ab initio calculations. The optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing several different basis sets up to MP2(full)/aug-cc-pVTZ and from density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants for the Eq-t conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the Eq-t conformer are: the distances C1-C4=1.547(5) angstroms, C4-C6=1.552(5)angstroms, C-O=1.416(5) angstroms and angles angleC6C4C1=86.6(5) degrees , angleC4C1C5=88.9(5) degrees and angleC6C5C1C4=22.8(5) degrees . The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

6.
We present a finite temperature quantum mechanical study of the dynamical and structural properties of small (4)He(N)-CO(2) clusters (N< or =17) using a path integral Monte Carlo (PIMC) method. The simulations were based on a He-CO(2) interaction potential with explicit dependence on the asymmetric stretch of the CO(2) molecule obtained at the CCSD(T) level. The shift of the CO(2) antisymmetric stretching (nu(3)) band origin and effective rotational constant were calculated as a function of the cluster size. In excellent agreement with experimental observations, the CO(2) vibrational band origin shifts and rotational constant show a turnaround near N=5, corresponding to a donut structure with the He atoms in equatorial positions of the linear dopant molecule.  相似文献   

7.
Two different axial and equatorial hydrogen-bonded conformers of the complex formed by pentamethylene sulfide and hydrogen fluoride have been generated in a pulsed supersonic expansion and characterised by means of Fourier transform microwave spectroscopy. The ground-state rotational spectra of six isotopomers (C(5)H(10)S...HF, C(5)H(10)S ...DF, C(5)H(10)(34)S ...HF, (13)C(alpha)C(4)H(10)S ...HF, (13)C(beta)C(4)H(10)S...HF and (13)C(gamma)C(4)H(10)S ...HF) have been analysed for both conformers in the frequency range 5.5-18.5 GHz. The rotational parameters were used to derive C(s) structures for the conformers, with hydrogen fluoride pointing to the domain of the nonbonding electron pairs at either the axial or equatorial position of the sulfur atom. The axial form was found to be the more stable, in contrast with the observation for the pentamethylene sulfide...HCl complex. No equatorial-to-axial relaxation was observed when He or Ar were used as the carrier gas. The conformational behaviour is compared with that of related six-membered rings and discussed in terms of the existence of secondary hydrogen bonding between the halogen atom and the nearest H atoms of the methylene groups of the ring. No significant structural distortion of pentamethylene sulfide upon complexation was detected from a comparison with the structure of the isolated monomer. Finally, an ab initio study was carried out to complement the experimental results.  相似文献   

8.
The structure of quinuclidine, HC(CH(2)CH(2))(3)N, has been re-investigated by quantum chemical calculations and by gas-phase electron diffraction (GED). The GED data, together with published rotational constants, have been analysed using the SARACEN method to determine the most reliable structure (r(h1)) for the gaseous molecule. The structures of two adducts of quinuclidine with group 13 trihydride molecules, MH(3) (M=B, Al), have also been determined by GED and quantum chemical calculations. The effect of the coordination of these hydrides to the quinuclidine nitrogen atom has been investigated, and the structural changes and energetics of adduct formation are discussed. We also present the crystal structure of quinuclidine borane.  相似文献   

9.
Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (?) C-F=1.383(3) [1.407(3)], C(α)-C(β)=1.543(3) [1.546(3)], C(β)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(β)C(γ)=85.0(5) [89.2(5)], ∠C(β)C(α)C(β)=89.3(5) [89.2(5)], ∠F-(C(β)C(α)C(β))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.  相似文献   

10.
Rotational spectra of seven isotopomers of tetracarbonylethyleneosmium, Os(CO)4(eta2-C2H4), were measured in the 4-12 GHz range using a Flygare-Balle-type pulsed-beam Fourier transform microwave spectrometer system. Olefin-transition metal complexes of this type occur extensively in recent organic syntheses and serve as important models for transition states in the metal-mediated transformations of alkenes. Three osmium ((192)Os, (190)Os, and (188)Os) and three unique 13C isotopomers (13C in ethylene, axial, and equatorial positions) were observed in natural abundance. Additional spectra were measured for a perdeuterated sample, Os(CO)4(eta2-C2D4). The measured rotational constants for the main osmium isotopomer ((192)Os) are A = 929.3256(6), B = 755.1707(3), and C = 752.7446(3) MHz, indicating a near-prolate asymmetric top molecule. The approximately 140 assigned b-type transitions were fit using a Watson S-reduced Hamiltonian including A, B, C, and five centrifugal distortion constants. A near-complete r0 gas-phase structure has been determined from a least-squares structural fit using eight adjustable structural parameters to fit the 21 measured rotational constants. Changes in the structure of ethylene on coordination to Os(CO)4 are large and well-determined. For the complex, the experimental ethylene C-C bond length is 1.432(5) A, which falls between the free ethylene value of 1.3391(13) A and the ethane value of 1.534(2) A. The angle between the plane of the CH2 group and the extended ethylene C-C bond ( angleout-of-plane) is 26.0(3) degrees , indicating that this complex is better described as a metallacyclopropane than as a pi-bonded olefin-metal complex. The Os-C-C-H dihedral angle is 106.7(2) degrees , indicating that the ethylene carbon atoms have near sp3 character in the complex. Kraitchman analysis of the available rotational constants gave principal axis coordinates for the carbon and hydrogen atoms in excellent agreement with the least-squares fit results. The new results on this osmium complex are compared with earlier work on the similar complex, tetracarbonylethyleneiron (Fe(CO)4(eta2-C2H4)). The ethylene structural changes upon coordination to the metal are found to be larger for the ethylene-osmium complex than for the analogous ethylene-iron complex, consistent with the expected greater pi donation for the osmium atom.  相似文献   

11.
Hydrazine passes through two transition states, TS1 (phi = 0 degrees ) and TS2 (phi = 180 degrees ), in the course of internal rotation around its N-N bond. The origin of the corresponding rotational barriers in hydrazine has been extensively studied by experimental and theoretical methods. Here, we used natural bond orbital (NBO) analysis and energy decomposition of rotational barrier energy (DeltaE(barrier)) to understand the origin of the torsional potential energy profile of this molecule. DeltaE(barrier) was dissected into structural (DeltaE(struc)), steric exchange (DeltaE(steric)), and hyperconjugative (DeltaE(deloc)) energy contributions. In both transition states, the major barrier-forming contribution is DeltaE(deloc). The TS2 barrier is lowered by pyramidalization of nitrogen atoms through lowering DeltaE(struc), not by N-N bond lengthening through lowering DeltaE(steric). Higher pyramidality of nitrogen atoms of TS2 than that of TS1 explains well why the N-N bond of TS2 is longer than that of TS1. Finally, the steric repulsion between nitrogen lone pairs does not determine the rotational barrier; nuclear-nuclear Coulombic repulsion between outer H/H atoms in TS1 plays an important role in increasing DeltaE(struc). Taken together, we explain the reason for the different TS1 and TS2 barriers. We show that NBO analysis is a useful tool for understanding structures and potential energy surfaces of compounds containing the N-N bond.  相似文献   

12.
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

13.
The carbonyl stretching vibration of 2-bromocyclohexanone (1) has been measured in a variety of solvents. It is shown that its component intensities are not only dependent on the populations of the axial and equatorial conformers, but are also dependent on the molar absorptivities (epsilon ) which are specific for each conformer in each solvent. In CCl(4), the axial and equatorial conformers have epsilon values of 417 and 818 l mol(-1) x cm(-1), respectively, while in CH(3)CN solution, the values were 664 and 293 l mol(-1) x cm(-1). These results are supported by results of theoretical calculations of frequencies, which gave an intensity of 223.8 kM mol(-1) x(1782 cm(-1)) for the axial and 174.4 kM mol(-1) x (1802 cm(-1)) for the equatorial conformer, indicating that the axial conformer presents a larger molar absorptivity than the equatorial one in the vapor phase. Moreover, the results presented here clearly demonstrate that although infrared spectroscopy at a single temperature can be an important auxiliary technique for conformational analysis, it must not be used to quantify conformational preferences of a molecule if the absorption molar coefficients for each conformer are not known or not amenable to experimental determination.  相似文献   

14.
The pure rotational spectrum of HPS, as well as its (34)S and D isotopologues, has been recorded at microwave, millimeter, and submillimeter wavelengths, the first observation of this molecule in the gas phase. The data were obtained using a combination of millimeter direct absorption, Fourier transform microwave (FTMW), and microwave-microwave double-resonance techniques, which cover the total frequency range from 15 to 419 GHz. Quantum chemical calculations at the B3LYP and CCSD(T) levels were also performed to aid in spectral identification. HPS was created in the direct absorption experiment from a mixture of elemental phosphorus, H(2)S, and Ar carrier gas; DPS was produced by adding D(2). In the FTMW study, these species were generated in a pulsed discharge nozzle from PH(3) and H(2)S or D(2)S, diluted in neon. The spectra recorded for HPS and its isotopologues exhibit clear asymmetric top patterns indicating bent structures; phosphorus hyperfine splittings were also observed in HPS, but not DPS. Analysis of the data yielded rotation, centrifugal distortion, and phosphorus nuclear spin-rotation parameters for the individual species. The r(m) ((1)) structure for HPS, calculated from the rotational constants, is r(H-P) = 1.438(1) A?, r(P-S) = 1.9320(1) A?, and θ(H-P-S) = 101.85(9)°. Empirically correcting for zero-point vibrational effects yields the geometry r(e)(H-P) = 1.4321(2) A?, r(e)(P-S) = 1.9287(1) A?, and θ(e)(H-P-S) = 101.78(1)°, in close agreement with the r(m) ((1)) structure. A small inertial defect was found for HPS indicating a relatively rigid molecule. Based on these data, the bonding in this species is best represented as H-P=S, similar to the first-row analog HNO, as well as HNS and HPO. Therefore, substitution of phosphorus and sulfur for nitrogen and oxygen does not result in a dramatic structural change.  相似文献   

15.
The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.  相似文献   

16.
The infrared spectra of gaseous and variable-temperature liquid xenon solutions of pyrrolidine have been recorded. The enthalpy difference has been determined to be 109 ± 11 cm(-1) (1.30 ± 0.13 kJ mol(-1)) with the envelope-equatorial conformer more stable than the twist form with 37 ± 3% present at ambient temperature. Ab initio calculations utilizing various basis sets up to MP2(full)/aug-cc-pVTZ have been used to predict the conformational stabilities, energy at the equatorial-axial saddle point, and barriers to planarity. From previously reported microwave rotational constants along with MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained for both conformers. Heavy atom distances (?) of equatorial[twist] conformer are as follows: N(1)-C(2) = 1.469(3)[1.476(3)], N(1)-C(3) = 1.469(3)[1.479(3)], C(2)-C(4) = 1.541(3)[1.556(3)], C(3)-C(5) = 1.541(3)[1.544(3)], C(4)-C(5) = 1.556(3)[1.543(3)]; and angles (deg)∠N(1)C(2)C(4) = 102.5(5)[107.6(5)], ∠N(1)C(3)C(5) = 102.5(5)[105.4(5)], ∠C(2)C(4)C(5) = 104.3(5)[104.6(5)], ∠C(3)C(5)C(4) = 104.3(5)[103.7(5)], ∠C(2)N(1)C(3) = 104.1(5)[103.9(5)], τC(2)C(4)C(5)C(3) = 0.0(5)[13.5(5)]. A complete vibrational assignment is proposed for both conformers.  相似文献   

17.
Fluorine substituents in organic molecules do dramatically influence the electronic structure of neighbouring functional groups and the conformation of molecules. Hence the presence of fluorine in a compound changes its chemical reactivity and biological activity. On the basis of MP2 and SCS-MP2 calculations, we discuss the conformational preferences and basicity of the diastereoisomeric 2-fluorocyclopropylamines (cis-2 and trans-2) in comparison to those of cyclopropylamine (1) and 2-fluoroethylamine (3). 1 and 2 are viewed as model compounds for the antidepressant drug tranylcypromine (trans-2-phenylcyclopropylamine, 1a) and its fluorinated derivatives 2. The potential energy profile for the rotation of the amino group in cis-2 differs from that of trans-2 and 1 which have very similar rotational curves. For 2 the global minimum conformer is trans-2a and the lowest energy cis-conformer 2c is less stable by 2.57 kcal mol(-1). The calculated enthalpy differences between the conformers gauche-1b and s-trans-1a (2.0 kcal mol(-1)) as well as between gauche-3b and gauche-4a (0.2 kcal mol(-1)) agree well with the available experimental data of 2.0 kcal mol(-1) and 0.1 +/- 0.3 kcal mol(-1), respectively. The calculated gas phase proton affinities (PA) of 1 (217.6 kcal mol(-1)), cis-2c (215.6 kcal mol(-1)), and trans-2a (209.3 kcal mol(-1)) follow the trends of the pKa values measured in solution for the diastereomeric 2-phenylcyclopropylamines 1a and 1b and their fluorinated derivatives cis-2 and trans-2. It is shown that the conformational preferences and basicity of the investigated molecules are due to stereoelectronic effects from hyperconjugative interactions which lead to different local charge distributions and different hybridization of the nitrogen lone-pair. The basicity of gauche-3a (PA = 215.3 kcal mol(-1)) and anti-3b (PA = 210.1 kcal mol(-1)) is controlled by the charge of the nitrogen atom, while that of cis-2c and trans-2a is overlap controlled as a result of different hybridization of the nitrogen lone-pair [sp4.34 (cis-2c), sp4.07 (trans-2a)].  相似文献   

18.
Thymine is one of the nucleobases which forms the nucleic acid (NA) base pair with adenine in DNA. The study of molecular structure and dynamics of nucleobases can help to understand and explain some processes in biological systems and therefore it is of interest. Because the scattered intensities on the C, N, and O atoms as well as some bond lengths in thymine are close to each other the structural problem cannot been solved by the gas phase electron diffraction (GED) method alone. Therefore the rotational constants from microvawe (MW) studies and differences in the groups of N-C, C=O, N-H, and C-H bond lengths from MP2 (full)/cc-pVQZ calculations were used as supplementary data. The analysis of GED data was based on the C(s) molecular symmetry according to results of the structure optimizations at the MP2 (full) level using 6-311G (d,p), cc-pVTZ, and cc-pVQZ basis sets confirmed by vibrational frequency calculations with 6-311G (d,p) and cc-pVTZ basis sets. Mean-square amplitudes as well as harmonic and anharmonic vibrational corrections to the internuclear distances (r(e)-r(a)) and to the rotational constants (B(e)(k)-B(0)(k), where k = A, B, C) were calculated from the quadratic (MP2 (full)/cc-pVTZ) and cubic (MP2 (full)/6-311G (d,p)) force constants (the latter were used only for anharmonic corrections). The harmonic force field was scaled using published IR and Raman spectra of the parent and N1,N3-dideuterated species, which were for the first time completely assigned in the present work. The main equilibrium structural parameters of the thymine molecule determined from GED data supplemented by MW rotational constants and results of MP2 calculations are the following (bond lengths in Angstroms and bond angles in degrees with 3sigma in parentheses): r(e) (C5=C6) = 1.344 (16), r(e) (C5-C9) = 1.487 (8), r(e) (N1-C6) = 1.372 (3), r(e) (N1-C2) = 1.377 (3), r(e) (C2-N3) = 1.378 (3), r(e) (N3-C4) = 1.395 (3), r(e) (C2=O7) = 1.210 (1), r(e) (C4=O8) = 1.215 (1), angle e (N1-C6=C5) = 123.1 (5), angle e (C2-N1-C6) = 123.7 (5), angle e (N1-C2-N3) = 112.8 (5), angle e (C2-N3-C4) = 128.0 (5), angle e (N3-C4-C5) = 114.8 (5), angle e (C6=C5-C9) = 124.4 (9). The experimental structural parameters are in good agreement with those from MP2 (full) calculations with use of cc-pVTZ and cc-pVQZ basis sets.  相似文献   

19.
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).  相似文献   

20.
The structure of iron pentacarbonyl, Fe(CO)(5), was reinvestigated by gas-phase electron diffraction using an experimental rotational constant available from the literature as a constraint on the structural parameters. The study utilized a B3LYP/6-311+G(d) ab initio quadratic force field, scaled to fit observed infrared wavenumbers, from which were calculated corrections for the effects of vibrational averaging on distances and certain other quantities useful for the structural analysis. The results confirm that the equatorial Fe-C bonds are longer than the axial ones, an important difference with the structure in the crystal where the equatorial Fe-C bonds are the shorter. Some distance (r(g)/A) and vibrational amplitude (l(alpha)/A) parameter values with estimated 2sigma uncertainties based on assumption of D(3h) symmetry are [r(Fe-C)] = 1.829(2), r(Fe-C)(eq) - r(Fe-C)(ax) = 0.032(20), [r(C=O)] = 1.146(2), r(C=O)(eq) - r(C=O)(ax) = 0.006(27), r(Fe-C)(ax) = 1.810(16), r(Fe-C)(eq) = 1.842(11), r(C=O)(ax) = 1.142(23), r(C=O)(eq) = 1.149(16), l(Fe-C)(ax) = l(Fe-C)(eq) = 0.047(5), and l(C=O)(ax) = l(C=O)(eq) = 0.036(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号