首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Taking into account the effects of thermal diffusion and optical penetration, as well as the finite width and duration of the laser source, the laser-generated ultrasonic force source at surface vicinity is presented. The full acoustic fields of laser-generated ultrasonic bulk wave are obtained and displayed in transversely isotropic plate. The features of laser-generated ultrasound bulk waves are analyzed. The features of laser-generated ultrasonic bulk wave are in good agreement with the theoretical results (the phase velocity surfaces), demonstrating the validity of this simulation. The numerical results indicate that the features of laser-generated ultrasound waveforms in anisotropic specimen, different from the case in isotropic materials, have a close relation with the propagating plane and propagation direction. This method can provide insight to the generation and propagation of laser-generated ultrasonic bulk wave in transversely isotropic material.  相似文献   

3.
Xian X  Lin S 《Ultrasonics》2008,48(3):202-208
A new type of compound multifrequency ultrasonic transducer is analyzed in this paper. The compound multifrequency ultrasonic transducer consists of two sandwiched ultrasonic transducers and a rectangular radiator. In virtue of the coupling between longitudinal vibration of the sandwiched ultrasonic transducers and flexural vibration of the rectangular radiator, the compound multifrequency ultrasonic transducer can produce several resonance frequencies. Some compound multifrequency ultrasonic transducers are designed and simulated by finite element method (ANSYS), and modal shapes and harmonic response are analyzed. The compound multifrequency ultrasonic transducers are designed and manufactured. The resonance frequencies are measured and compared with the numerical results. The effect of the geometrical dimensions of the compound multifrequency ultrasonic transducer and the location of two sandwiched ultrasonic transducers on the compound multifrequency ultrasonic transducer is discussed. It is shown experimentally and numerically that the compound multifrequency ultrasonic transducer has several resonance frequencies.  相似文献   

4.
A numerical model is established to investigate the influence of transparent coating thickness on the laser-generated thermoelastic force source and ultrasound waves in the coating-substrate system by using the finite element method (FEM). Taking into account the effects of thermal diffusion, the finite width and duration of the laser source, as well as the temperature dependence of material properties, the transient temperature distributions are obtained firstly. Applying this temperature field to structure analyses as thermal loading, the thermoelastic stress field and laser-generated ultrasound wave in the specimen are obtained. The generation and propagation of the laser thermoelastically induced stress field and ultrasonic waves in coating-substrate system are presented in detail. The influence of transparent coating thickness on the transient temperature distribution, thermoelastic force source and the laser-generated ultrasound waveforms is investigated. The numerical results indicate that the thermoelastic force source and laser-generated ultrasound waveform are strongly affected by the coating thickness due to the constraint of coating. This method can provide insight into the generation and propagation of the laser-generated stress field in coating-substrate system consisting of a transparent coating and an opaque metallic substrate. It provides theoretical basics to optimize ultrasonic signal generation in particular applications and invert the physical and geometrical parameter of the coating-substrate system more accurately in the experiment.  相似文献   

5.
Sasaki Y  Hasegawa M 《Ultrasonics》2007,46(2):184-190
The ultrasonic velocity of shear waves propagating through radial direction of a wood plate specimen, transversely to the loading direction, was measured. By rotating an ultrasonic sensor, the oscillation direction of the shear waves was varied with respect to the wood plate axis and loading direction. The relationship between shear wave velocity and oscillation direction was examined to discuss the effect of anisotropy on the acoustoelastic birefringence in wood. The results obtained were summarized as follows. When the oscillation direction of the shear wave corresponded to the tangential direction of the wood specimen regardless of the stress direction, shear wave velocity decreased markedly and the relationship between shear wave velocity and rotation angle tended to become discontinuous. That is, when the shear waves oscillated in the anisotropic axis of the wood, the shear wave velocity peaked unlike in the case of oscillation in the stress direction. In an isotropic material (acrylic, aluminum 5052), on the contrary, when the shear waves oscillated in the stress direction of the specimen, the shear wave velocity peaked regardless of the main-axis direction of the specimen. On the basis of the discussion of these results, the ultrasonic shear wave propagating in wood under stress is confirmed to be polarized in the anisotropic axis of the wood.  相似文献   

6.
Reflection of structural waves at a solid/liquid interface   总被引:2,自引:0,他引:2  
This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface.  相似文献   

7.
This research deals with the ultrasonic characterization of thermal damage in concrete. This damage leads to the appearance of microcracks which then evolve in terms of volume rate and size in the material. The scattering of ultrasonic waves from the inclusions is present in this type of medium. The propagation of the longitudinal wave in the heterogeneous media is studied via a homogenization model that integrates the multiple scattering of waves. The model allows us to determine the phase velocity and the attenuation according to the elements which make the medium. Simulations adapted to the concrete are developed in order to test the responses of the model. These behaviors are validated by an experimental study: the measurements of phase velocity and attenuation are performed in immersion, with a comparison method, on a frequency domain which ranges from 160 kHz to 1.3 MHz. The analysis of different theoretical and experimental results obtained on cement-based media leads to the model validation, on the phase velocity behavior, in the case of a damage simulated by expanded polystyrene spheres in granular media. The application to the case of a thermally damaged concrete shows a good qualitative agreement for the changes in velocity and attenuation.  相似文献   

8.
The use of Biot theory for modelling ultrasonic wave propagation in porous media involves the definition of a "critical frequency" above which both fast and slow compressional waves will, in principle, propagate. Critical frequencies have been evaluated for healthy and osteoporotic cancellous bone filled with water or marrow, using data from the literature. The range of pore sizes in bone gives rise to a critical frequency band rather than a single critical frequency, the mean of which is lower for osteoporotic bone than normal bone. However, the critical frequency is a theoretical concept and previous researchers considered a more realistic "viscous frequency" above which both fast and slow waves may be experimentally observed. Viscous frequencies in bone are found to be several orders of magnitude greater than calculated critical frequencies. Whereas two waves may well be observed at all ultrasonic frequencies for water-filled cancellous bone at 20 degrees C, it is probable megahertz frequencies would be needed for observation of two waves in vivo.  相似文献   

9.
Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This “green” method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.  相似文献   

10.
11.
12.
Huang R  Schmerr LW 《Ultrasonics》2009,49(2):219-225
This work characterizes the electrical and electromechanical aspects of an ultrasonic linear phased array inspection system, using a matrix of system functions that are obtained from the measured response of individual array elements in a simple reference experiment. It is shown that for the arrays tested all these system functions are essentially identical, allowing one to use a single system function to characterize the entire array, as done for an ordinary single element transducer. The variation of this single system function with the number of elements firing in the array or with changes of the delay law used is examined. It is also demonstrated that once such a single system function is obtained for an array, it can be used in a complete ultrasonic measurement model to accurately predict the array response measured from a reference reflector in an immersion setup.  相似文献   

13.
贾璐  阎守国  张碧星  黄娟 《应用声学》2022,41(2):278-284
针对非线性瑞利波在均匀分层半空间结构中的激发和传播规律进行研究。根据摄动理论和模态分解将分层半空间结构中瑞利波的二次谐波声场表示为二倍频瑞利波模式的线性组合,经由互易关系得到各模式的展开系数表达式。对不同分层半空间结构中瑞利波二次谐波的激发和传播特性进行讨论,结果表明相速度匹配的瑞利波模式其二次谐波分量随传播距离线性增长,非匹配模式的二次谐波分量则沿传播方向周期震荡传播。此外,文中定义非线性参数表征瑞利波模式产生的非线性程度,这有利于选择出具有明显非线性效应的匹配点,为后续检测工作提供理论依据,具有指导意义。  相似文献   

14.
Topological imaging is a recent method. So far, it has been applied to bulk waves, and high resolution has been demonstrated for imaging scatterers even with a single ultrasonic insonification of the inspected medium. This method consists of (i) emitting waves and measuring the response of the medium; (ii) solving two propagation problems: the direct problem, where the experimental source is simulated, and the adjoint problem, where the source is the time-reversed difference between the measured wave field and that obtained from the direct problem; (iii) computing the image by simply multiplying both wave fields together in the frequency domain, and integrating over the frequency. The speed of the method depends only on the cost of the field computations that are performed in the defect-free medium. The present work deals with the application of topological imaging to plate guided waves. Combining modal theory and Fourier analysis, the computations are performed in a very short time. In the investigated cases, two-dimensional in-plane imaging is based on propagation of the single S0 Lamb mode. Despite very high dispersion of that mode, scatterers are accurately located and the spatial resolution is equal to about one wavelength.  相似文献   

15.
Seiner H  Landa M 《Ultrasonics》2005,43(4):253-263
The elastic coefficients of anisotropic solids are often evaluated from measurements of phase or group velocities of ultrasonic bulk waves by the usage of inverse optimizing procedures. This paper discusses the effects of various factors on such procedures results for transversely isotropic solids with considerably strong anisotropy. First, the inverse determination of all elastic coefficients of unidirectional CFRP composite is briefly outlined. Then the results of the optimization are treated as exact values and the sensitivity of the optimizing process versus main considered sources of inaccuracies is analyzed. Results of extensive simulations are presented to illustrate the effect of input data distortion, input data incompleteness, and geometrical conversion from experimentally obtained group velocities into corresponding phase velocities used as input data for the optimizing procedure. The paper takes note of how information about the elastic coefficients can be extracted from the different segments of the phase velocity surface. The stability versus input data distortion for inversion from group velocities and phase velocities is compared and the importance of reliable geometrical converting from group into phase velocities is illustrated. An novel method for geometrical conversion of distorted group velocity data into corresponding phase velocities based on affine combinations of low-order polynomials is presented and compared with piecewise or high-order polynomial fitting.  相似文献   

16.
When acoustic waves are scattered by random sound-speed fluctuations in a two-dimensional channel the energy is continually transferred between the propagating modes. In the multiple- scattering region the energy flux assumes an asymptotic form in which there is equal energy flux propagating in each mode. Here we shall make use of this well known result to show how to obtain an asymptotic form for a pulse of acoustic energy propagating in the channel. In the multiple-scattering region the speed of the acoustic waves in the pulse continually changes as the energy is transferred between the modes. The process is basically a diffusion process around the mean speed of propagation. We shall first show, using physical arguments, that the diffusion coefficient is proportional to the square root of the propagation distance times the mean free path of scattering. The theory governing the acoustic propagation in the channel is formulated in terms of modal coherence equations and we shall next give a brief review of the definitions of the coherence functions and a discussion of how the equations governing the propagation of the modal coherence functions are derived. We shall then show how the pulse shape and the relevant parameters may be obtained by solving the basic modal coherence equations at large propagation distances.  相似文献   

17.
The propagation of a longitudinal ultrasonic wave normally incident upon an adhesively bonded structure is studied. The structure consists of adherend and adhesive layers with finite thickness. Interfaces between adherend and adhesive are regarded as distributed springs. Theoretical and experimental results show that resonant frequencies of the bonded structure vary sensitively with the interface stiffness constants and adhesive thickness, and these interface characteristics are inversed by the simulation annealing (SA) method. Furthermore, the distribution image of interface stiffnesses is compared with the state of fracture interface, and quantitative prediction of shear strength is achieved based on the distribution of interface stiffnesses and adhesive thicknesses by using a back-propagation neutral network. The average relative error of the shear strength from prediction to real value is 10.7%.  相似文献   

18.
Laser detection methods allow the investigation of ultrasonic transient phenomena in both space and time dimensions. Used for the experimental investigation of surface wave propagation along a 2D surface, laser ultrasonic leads to three dimensional (3D) space-time signal collections. The classical high resolution signal processing methods or 3D Fourier Transforms can be used in order to extract the wave propagation information, however these methods are not adapted for identifying where and when the waves are generated. In order to quantify these transient aspects in the space-time-wave number-frequency domains, the 3D Gabor transform is introduced. The 3D Gabor transform properties are presented. The potential of the 3D Gabor for the identification of the local and transient complex wave numbers is illustrated on the propagation of surface waves on a piezoelectric quartz (AT cut, 6 MHz). In this experimental study, the quartz is excited by a voltage pulse and the quartz surface is scanned by a laser vibrometer. The 3D Gabor analysis shows that the circular electrodes borders generate anti-phase surface waves that propagates outside the electrodes, with a strong energy contribution in the low frequency domain (<1 MHz). The transient analysis also points out, for higher frequencies, where the surface waves are generated and how they propagate with respect of both to the geometry of the electrodes and the crystallographic axis of the quartz. These results confirm the theoretical modal analysis and provide new knowledge about the key role played by the electrodes border. This will allow the optimization of the electrodes shape in order to design low frequency Lamb wave sensors.  相似文献   

19.
The results of investigation of the propagation of longitudinal ultrasonic waves in glasses with a regular volume distribution of elastic properties resulting in the narrowing of a beam of ultrasonic waves at the output of the sample are presented. Such glasses have not been used in acoustics previously. They were used by us for the creation of the first samples of inhomogeneous acoustic lenses. The results obtained in the investigation of inhomogeneous acoustic lenses based on specially developed inhomogeneous glasses and methods for their production are discussed. It is shown that the noticeable effect of focusing ultrasonic waves in the range 2–14 MHz is observed already for glass samples with dimensions 10–20 mm. Other possible applications of inhomogeneous acoustic lenses, for example, as a medium for ultrasonic delay lines and acousto-optical cells, are discussed.  相似文献   

20.
The finite element method is firstly used to simulate the laser-induced leaky waves at fluid–solid interfaces. Corresponding models and arithmetic are developed, in that the fluid–solid interactions are described by a coupling matrix and the infinite boundary of fluid domain is modeled by acoustic absorption elements. Typical calculations are executed for air–aluminum plane and cylindrical interfaces. The results are in very good agreements with the experimental signals in available literatures, which verify the correctness of our finite element model for simulating laser-induced leaky wave at fluid–solid interfaces. And some elementary conclusions are obtained for the laser induced leaky waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号