首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of applied dc bias electric field on dielectric permittivity in bulk La2NiMnO6 is investigated in this paper. It is found that a small bias field of 40 V/cm can greatly reduce the dielectric permittivity around the room temperature, compared to the much larger electric field that is required for conventional ferroelectric materials. The observed giant dielectric tunability is retained over a broad range of around room temperature and is most likely related to the charge ordering of Ni2+ and Mn4+ ions, further confirming the existence of electronic ferroelectricity in La2NiMnO6.  相似文献   

2.
It has been suggested that hydrogen-rich systems at high pressure may exhibit notably high super-conducting transition temperatures. One of the more interesting theoretical predictions was that hydrogen sulfide can be metallized and the high-temperature superconducting state can be induced. A record critical temperature (203 K) was later confirmed for H3S in an experiment. In this paper, we investigated, within the framework of the Eliashberg formalism, the properties of compressed MgH6, which is expected to be a very good candidate for room-temperature superconductivity. This applies particularly to the pressure range from 300 to 400 GPa, where the transition temperature is close to 400 K. Moreover, the estimated thermodynamic properties and the resulting dimensionless ratios exceed the predictions of the Bardeen–Cooper–Schrieffer theory. This behavior is attributed to the strong electron–phonon coupling and retardation effects existing in hydrogen-dominated materials under high pressure.  相似文献   

3.
Two successive magnetocaloric effects consisting of inverse magnetocaloric effect around martensitic transition and negative magnetocaloric effect around magnetic transition of austenitic phase have been observed in Ni50Mn34In15Al alloy. Large inverse magnetic entropy change ΔSm ( ~ 21.3 J kg?1 K?1), small thermal and magnetic hysteresis of martensitic transition give rise of large net refrigerant capacity ( ~ 152.3 J kg?1) under a magnetic field of 50 kOe, which is comparable with that ( ~ 157.9 J kg?1) of second-order transition. The large combined magnetocaloric effects make the Ni50Mn34In15Al alloy as a promising candidate material for room temperature magnetic refrigeration.  相似文献   

4.
We have studied the magnetodielectric response of Y2Cu2O5, the so-called blue phase in the Y2O3-CuO-BaO phase diagram. Based on symmetry principles, we predict and demonstrate magneto-dielectric coupling on a single crystal sample. We report an anomaly in the dielectric constant at the ordering temperature of the Cu spins. We probe the magnetic field-induced phase transitions between four different magnetic phases using magneto-capacitance measurements, demonstrating relatively strong magnetodielectric coupling. We observe an increase in dielectric constant in the spin-flip phase where there exists spontaneous magnetization. We construct a detailed magnetic phase diagram. The magnetodielectric coupling is analyzed in terms of striction induced by symmetric superexchange and optical phonon frequency shifts.  相似文献   

5.
Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01–100 kHz, in sintered ZrO2—8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, specific surface area etc. It has been observed that the real and the imaginary parts of the complex dielectric permittivity, for the specimens, depend not only on the porosity but also on the pore size distribution and pore morphology significantly. Unlike normal Debye relaxation process, where the loss tangent vis-à-vis the imaginary part of the dielectric constant shows a pronounced peak, in the present case the same increases at lower frequency region and an anomalous non-Debye type relaxation process manifests.  相似文献   

6.
7.
Results of studies of magnetooptical Kerr effect and magnetoreflection of natural light in La2/3Ba1/3MnO3/SrTiO3 films of different thickness are presented. The Kerr effect was shown to be the most prominent in visible and near IR range; magnetoreflection was found to achieve its maximum of about 10% in the mid-IR range near the room temperature. Physical mechanisms defining the value and sign of the effects and the influence of the thin-film state on the magnetooptical properties are discussed. Magnetoreflection is estimated in the framework of the magnetorefractive effect theory.  相似文献   

8.
The magnitude and character of conductivity were studied for Y2(WO4)3 ceramics synthesized by the ceramic (from oxides) and organic-nitrate procedures. Investigation of the dependence \(\sigma \left( {{\alpha _{{o_2}}}} \right)\) and measurements of the ion transport numbers of charge carriers by the EMF method showed that Y2(WO4)3 is basically an ion conductor. The conductivity is largely determined by the sample preparation conditions related to the dependence of the specific surface area and powder grain size on the synthetic procedure. The maximum high-temperature conductivity of Y2(WO4)3 was 2.51 × 10–4 S/cm, which roughly corresponds to the conductivities of Sc2(WO4)3 and In2(WO4)3 measured under the same conditions. It was confirmed that Y2(WO4)3 crystallizes as a mixed monoclinic-orthorhombic structure at 1000°C. The character of water incorporation in hydrated Y2(WO4)3 crystals was studied by thermogravimetry and diffuse reflectance IR spectroscopy. A qualitative model of water intercalation was suggested.  相似文献   

9.
10.
Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selection rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.  相似文献   

11.
Nanoscale yttrium–barium–copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/n-octane ratio affected the droplet size which was in the range of 3–8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30–100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.  相似文献   

12.
We report the experimental observation of random wavelength emission and intensity-dependent central-wavelength shift in a diode-pumped Yb3+-doped Y2O3 ceramic laser. We show experimentally that, like conventional lasers, the emission of the laser has fixed well-defined transverse modes; however, its instantaneous emission wavelengths change randomly with time. The central wavelength of the laser emission also shifts with the intracavity light intensity. A model was developed to describe the spectral behavior of Yb3+-doped lasers. We show that the observed random wavelength emission and central lasing wavelength shift of the laser could be well explained based on the strong reabsorption of light in the gain medium. PACS 42.55.Rz; 42.60.Mi; 42.55.Xi  相似文献   

13.
The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.  相似文献   

14.
We apply, for the first time to our knowledge, photorefractive grating spectroscopy to obtain not-yet-known data on the anisotropy of the dielectric permittivity of Sn2P2S6. Two independent techniques are used, one based on measurements of the amplitude of the space-charge field grating as a function of grating spacing and the other based on measurements of the grating decay time, also as a function of grating spacing. Both techniques provide close values for the anisotropy, which appears to be well pronounced, a ratio εxxzz≈4 is revealed for two of the three independent components of the dielectric tensor. Our data also allow us to conclude that the charge mobility is nearly isotropic in the same plane, μxxzz≈1. Received: 2 December 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +380-44/265-2359, E-mail: odoulov@iop.kiev.ua  相似文献   

15.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

16.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

17.
Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.  相似文献   

18.
Polymer composite comprising polyvinylidene fluoride (PVDF) and potassium hexatitante (K2Ti6O13) was synthesized by solution casting. The effect of K2Ti6O13 on surface, thermal, and electrical properties of polymer composite were investigated. The addition of K2Ti6O13 with polymer leads to thermal degradation and transition of polymer composite from semi-crystalline to amorphous phase. The optimum results of contact angle for different loading wt% of K2Ti6O13 were directly correlated with the surface morphology. Our experimental results confirmed the incorporation of K2Ti6O13 in polymer by SEM micrographs. The evaluated dielectric properties (ε' = 424; tan δ = 2.14 at 130 °C and 100 Hz frequency for 20 wt% loading of K2Ti6O13) for polymer composite are higher in compared to pure polymer. The enhancement in dielectric constant and changing the surface properties of polymer composite can be used for the development of electrochemical storage device applications.  相似文献   

19.
In this work we report results on electro-physical, optical and photorefractive investigations for Sb-doped Sn2P2S6 crystals. The crystals are obtained by two methods: the vapour-transport technique and the Bridgman technique using stoichiometric Sn2P2S6 composition with different amounts of antimony in the initial compound. The good optical quality of the crystals obtained with the Bridgman technique is underlined. The dependences of the photorefractive two-beam coupling coefficient and the grating build-up time are investigated at the wavelength of 633 nm. It is found that the sample doped with 1.5% of Sb is characterized by an optimal combination of the main photorefractive parameters exhibiting a fairly high two-beam coupling coefficient (up to 20 cm−1) and a short response time (1.3 ms) that is the shortest among all the previously studied Sn2P2S6 crystals in the red spectral region.  相似文献   

20.
We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3d states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号