首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel flowerlike ZnO structures have been rapidly synthesized on (1 0 0)-Si substrates via thermolysis of zinc acetate in air ambient without any catalyst. The obtained ZnO products exhibit well-defined flowerlike morphologies consisting of multilayer petal crystals with tapering feature. High-resolution transmission electron microscope (HRTEM) and corresponding selected area electron diffraction pattern (SAED) reveal that these petal crystals are single crystal in nature and preferentially oriented in the c-axis direction. Room-temperature photoluminescence (PL) spectra show that all the samples exhibit prominent UV emissions around 376.8 nm and very weak visible emission peaks, which demonstrates that there are few deep-level defects in the single crystal petals of the flowerlike ZnO structures. The growth mechanism of the as-synthesized flowerlike ZnO structures was also discussed.  相似文献   

2.
In this work, Co-doped ZnO nanofibers have been fabricated successfully by an electrospinning technique. The as-prepared nanofibers are characterized by themogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectra and photoluminescence spectroscopy (PL). Results have showed that a wurtzite ZnO nanofibers were obtained and the PL spectrum showed a red-shift by 10 nm due to narrowing of the ZnO band gap (∼3.29 eV) as a result of Co doping. Meanwhile, Raman scattering spectra exhibited an unusual peak at 540 cm−1.  相似文献   

3.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

4.
Single-crystalline ZnO nanowires (NWs) were synthesized by a facile vapor transport method. The good orientation and high crystal quality were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) measurements. Excitation-power-dependence photoluminescence spectra of ZnO NWs show that the UV emission displayed an evident blueshift with increasing excitation power and the corresponding energy shift might be as large as 10 meV. This anomalous phenomenon correlates to the band bending level caused by the surface built-in electric field due to the existence of substantial oxygen vacancies. By increasing the excitation power, the enhanced neutralization effect near the surface will reduce the built-in electric field and lead to a reduction of band bending which triggers the blueshift of the UV emission.  相似文献   

5.
A hydrothermal method has been optimized for the synthesis of ZnS nanoparticles. The nanoparticles were stabilized using Hexamethylenetetramine (HMTA) as surfactant in aqueous solution. The self-assembling of the surfactant molecules in the water solution forms a unique architecture that can be adopted as the reaction template for the formation of nanomaterials. The average grain size of the nanoparticles calculated from the XRD pattern was of the order of 2 nm which exhibits cubic zinc-blende structure. TEM results showed that the synthesized nanoparticles were uniformly dispersed in the HMTA matrix without aggregation. The spectroscopic results revealed that the synthesized ZnS nanoparticles exhibits strong quantum confinement effect as the optical band gap energy increased significantly compared to the bulk ZnS material. Formation of HMTA capped ZnS nanoparticles were confirmed by FTIR studies. The PL spectra exhibit a strong green emission peak around 502 nm attributed to some self-activated defect centers related to Zn-vacancies.  相似文献   

6.
ZnO:In films are successfully prepared by using the electrostatic spray deposition technique. X-ray diffraction indicates that the ZnO:In films have a polycrystalline hexagonal wurtzite structure with lattice parameters a=3.267 Å and c=5.209 Å. Photoluminescence properties of the films are investigated in the temperature range of 11.6-300 K, showing strong luminescence in the whole range of temperature. The temperature dependence of the photoluminescence are carried out with full profile fitting of spectra, which clearly shows that the ultraviolet (UV) emission in In-doped ZnO films at low temperature are attributed to emission of a neutral donor-bound exciton (D°X) and recombination of donor-acceptor pairs (DAP), while the UV emission at room temperature originates from radiative transition of an electron bound on a donor to the valence band.  相似文献   

7.
Epitaxial ZnO thin films have been synthesized directly on Si(1 1 1) substrates by pulsed laser deposition (PLD) in vacuum. The reflection high-energy electron diffraction (RHEED) indicates that streaky patterns can be clearly observed from the ZnO epilayers prepared at 600 and 650 °C, revealing a two-dimensional (2D) growth mode. While the ZnO thin film deposited in oxygen ambient shows ring RHEED pattern. There is a compressive in-plane stress existing in the ZnO epitaxial film, but a tensile one in the polycrystalline film. Compared with the ZnO epilayer, the ZnO polycrystalline film shows more intense ultraviolet emission (UVE) with a small full width at half maximum (FWHM) of 89 meV. It is suggested that the atomically flat epilayers may be powerfully used as transitive stratums to grow high-quality ZnO films suitable for the fabrication of optoelectronic devices.  相似文献   

8.
Heterojunction light-emitting diodes with ZnO/Si structure were fabricated on both high-resistivity (p) and low-resistivity (p+) Si substrates by metal-organic chemical vapor deposition technology. Fairly good rectifications were observed from the current-voltage curves of both heterojunctions. Ultraviolet (UV) and blue-white electroluminescence (EL) from ZnO layer were observed only from ZnO/p+-Si heterojunction under forward bias at room temperature (RT), while strong infrared (IR) EL emissions from Si substrates were detected from both ZnO/p-Si and ZnO/p+-Si heterojunctions. The UV and IR EL mechanisms have been explained by energy band structures. The realization of RT EL in UV-visible and IR region on Si substrate has great applicable potential for Si-based optoelectronic integrated circuits.  相似文献   

9.
ZnO films were deposited on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Annealing treatments for as-deposited samples were performed in different atmosphere under various pressures in the same chamber just after growth. The effect of annealing atmosphere on the electrical, structural, and optical properties of the deposited films has been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), Hall effect, and optical absorption measurements. The results indicated that the electrical and structural properties of the films were highly influenced by annealing atmosphere, which was more pronounced for the films annealed in oxygen ambient. The most significant improvements for structural and electrical properties were obtained for the film annealed in oxygen under the pressure of 60 Pa. Under the optimum annealing condition, the lowest resistivity of 0.28 Ω cm and the highest mobility of 19.6 cm2 v−1 s−1 were obtained. Meanwhile, the absorbance spectra turned steeper and the optical band gap red shifted back to the single-crystal value.  相似文献   

10.
The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.  相似文献   

11.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

12.
ZnO thin films were grown on (1 0 0) p-Si substrates by Photo-assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) using diethylzinc (DEZn) and O2 as source materials and tungsten-halogen lamp as a light source. The effects of tungsten-halogen lamp irradiation on the surface morphology, structural and optical properties of the deposited ZnO films have been investigated by means of atomic force microscope (AFM), X-ray diffraction and photoluminescence (PL) spectra measurements. Compared with the samples without irradiation, the several characteristics of ZnO films with irradiation are improved, including an improvement in the crystallinity of c-axis orientation, an increase in the grain size and an improvement in optical quality of ZnO films. These results indicated that light irradiation played an important role in the growth of ZnO films by PA-MOCVD.  相似文献   

13.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

14.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

15.
The effect of the annealing atmosphere on the luminescent efficiency of ZnTe:O phosphors for X-ray imaging applications was studied. The phosphors were doped by ball-milling bulk ZnTe crystals in an O2 atmosphere and annealed in various atmospheres: vacuum, N2 or forming gas (95%N2/5%H2). All samples exhibited a deep red emission centered at 680 nm.The samples annealed in forming gas atmosphere exhibited an X-ray luminescent efficiency five times higher than the samples annealed in vacuum or N2 atmospheres, which was attributed to the removal of surface tellurium oxides.  相似文献   

16.
Single-crystalline zinc oxide (ZnO) nanorods with cuboid morphology have been prepared on the zinc-filled porous silicon substrate using a vapor phase transport method. Field-emission measurements showed that the turn-on field and threshold field of the cuboid ZnO nanorods film were about 3.2 and 8.2 V/μm respectively. From the emitter surface, a homogeneous emission image was observed with emission site density (ESD) of ∼104 cm−2. The better emission uniformity and the high ESD may be attributed to a large number of ZnO nanocrystallites as emitter on the surface of the nanorod end contributing to emission.  相似文献   

17.
ZnO nanowall networks grown by a high pressure pulsed laser deposition (PLD) technique on a pre‐patterned thin gold film are presented. The thin gold film on a c ‐plane oriented sapphire substrate was structured with diffraction mask projection laser ablation (DiMPLA). It is shown that only areas processed with the laser patterning technique reveal homogeneous growth of ZnO nanowall networks. Photoluminescence measurements prove the higher material quality of the pre‐patterned regions compared to the untreated ones. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
It is shown that ZnO nanorods grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe+23 irradiation at a dose of 1.5 × 1014 cm–2 in ZnO nanorods is nearly identical to that induced by a dose of 6 × 1012 cm–2 in bulk layers. The change in the nature of electronic transitions responsible for luminescence occurs at an irradiation dose around 1 × 1014 cm–2 and 5 × 1012 cm–2 in nanorods and bulk layers, respectively. High energy heavy ion irradiation followed by thermal annealing is also effective on the quality of ZnO nanorods grown by electrodeposition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
ZnO thin films were grown homoepitaxially on O‐face ZnO single crystals by pulsed‐laser deposition. The ZnO substrates grown by the hydrothermal method were heat‐treated in oxygen ambient at 1000 °C for 2 h prior to deposition. After the thermal treatment the substrates show bilayer steps between 200–400 nm wide terraces and a considerably improved crystalline structure. Thin film surfaces exhibit closed loop spirals and show steps of c /2 or c. The FWHM of the (0002) rocking curve of the best sample is 29″. Similar to the substrates used, Al is contained in the thin films (<1014 cm–3) as photoluminescence (PL) and thermal admittance spectroscopy suggest. However, deep levels between 200 and 400 meV below the conduction band are the dominant donors at room temperature. Low temperature PL is dominated by (Al0,X) (I6, FWHM: 200 µeV) and extremely homogeneous (σ ≈ 1%).

  相似文献   


20.
We report a novel method of growing red luminescent (635 nm) Mn-doped CdS (CdS:Mn) nanoparticles capped by an inorganic shell of Mn(OH)2. CdSO4, Na2S2O3 and Mn(NO3)2 were used as the precursors, and thioglycerol (C3H8O2S) was employed as the capping agent and also the catalyst of the reaction. Using these materials resulted in very slow rate of the reaction and particles growth. The self-assembled one-pot process was performed at pH of 8 and Mn:Cd ratio of 10, and took about 10 days for completion. CdS:Mn nanoparticles are slowly formed in the first day of the process; however, the luminescence is weak. After 7 days, the solution turns white turbid through the formation of additional particles, which precipitate on the walls on the next day. At this stage, a relatively strong red luminescence at 635 nm appears from transparent solution of the CdS:Mn nanoparticles. The white deposit on the walls turns to dark-brown color and luminescence increases on the 9th day. Finally, the CdS:Mn nanoparticles agglomerate and precipitate out of the solution on 10th day. X-ray diffraction and optical spectroscopy showed crystalline phase CdS nanoparticles with an average size of 3.6 nm. We explain the luminescence enhancement based on the formation of a Mn(OH)2 shell on the surface of the CdS:Mn nanoparticles during the precipitation stage. This can passivate the S dangling bonds located on the particles surface. As the surface Cd sites are previously capped with thioglycerol molecules, a complete surface passivation is achieved and results in emergence of high-intensity luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号