首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

2.
Field emission study of thin water layers was performed to examine their properties and their changes after application of a high electric field. Comparison of field emission characteristics of water layers adsorbed on clean tungsten and gold-covered tungsten suggested that, whereas water molecules adsorbed on tungsten are oriented by oxygen atoms towards the metal surface, water layer on gold-covered tungsten has amorphous character with no preferential orientation. Both heated and non-heated layers are heavily influenced by applied high electric field strengths (F ≈30 MV/cm). Decrease of the work function and of the voltage needed for a constant emission current during successive increase of the electric field was tentatively interpreted in terms of chemical and morfological changes of the water layer due to the field dissociation and solvation.  相似文献   

3.
Jaewu Choi 《Surface science》2006,600(15):2997-3002
Photoemission results indicate that the initial adsorption of cobaltocene on Cu(1 1 1) at 150 K leads to molecular fragmentation, but with subsequent cobaltocene exposures, molecular absorption occurs. The molecularly adsorbed species is either adsorbed with only a fraction of molecules adopting a preferential orientation along the surface normal or adsorbed with the molecular axis away from the surface normal. This adsorption behavior is compared to nickelocene and ferrocene adsorption.  相似文献   

4.
Nele Vandamme 《Surface science》2006,600(14):2894-2899
Using atomic force microscopy we investigated how local capillary phenomena are affected by the deposition of a self-assembled 1,4-benzenedimethanethiol (BDMT) layer on epitaxially grown Au(1 1 1) and Ag(1 1 1) films. Force-distance curves monitored at varying relative humidity show clear differences in the adhesion forces on the different samples, which can be explained in terms of a change in the wetting behavior due to the presence of the molecules. Moreover, we found that not only the chemical structure of the molecules but also their orientation strongly influences the strength of the capillary forces. A detailed analysis of the measurements shows that condensation of water vapor on Au(1 1 1) films is drastically enhanced due to the vertically aligned BDMT molecules, while on Ag(1 1 1) water condensation is reduced due to a parallel molecule orientation.  相似文献   

5.
We present calculations of the desorption rate of water molecules from MgO(0 0 1) at a range of coverages θ and temperatures T. Our aim is to demonstrate that this can be done without making uncontrollable statistical mechanical approximations, and we achieve this by using the potential of mean force method reported previously. As in our earlier work on desorption of isolated molecules, we use a classical interaction model. We find that correlations between adsorbed molecules greatly increase the simulation time needed to obtain good statistical accuracy, compared with the isolated molecule. The activation energy for desorption varies significantly with coverage. The calculations also yield the chemical potential of adsorbed molecules as a function of θ and T, from which we can deduce the critical temperature and coverage for phase separation of adsorbed molecules.  相似文献   

6.
We study the electronic structure of tin-phthalocyanine (SnPc) molecules adsorbed on a Ag(1 1 1) surface by high-resolution photoelectron spectroscopy. We particularly address the effect of different SnPc coverages on the interaction and charge transfer at the interface. The results give evidence for a covalent molecule–substrate interaction, which is temperature and coverage dependent. The valence and core level spectra as well as the work function measurements allow us monitoring subtle differences in the strength of the interface interaction, thus demonstrating the sensitivity of the methods. The results consistently show the effect of charge exchange between substrate and molecules which obviously leads to a net charge transfer into the SnPc molecules, and which is increased with decreasing coverage. Surprisingly, the Sn3d core levels are neither effected by variations of charge transfer and interaction strength, nor by a possible “Sn-up” or “Sn-down” orientation, which have been observed for sub-monolayers.  相似文献   

7.
The effect of polymers weakly adsorbed on a quartz surface on the structure of the interfacial water molecules was investigated by optical sum frequency (SF) spectroscopy. As polymers, poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and two types of tri-block copolymer of Pluronic L64 and 17R-4 were used. SF intensity spectra of OH stretching mode of water molecules at the interface between a quartz substrate and aqueous solutions of the polymers were measured. The total SF intensity of the interfacial water of the L64 aqueous solution was smaller than those of other solutions. This result indicates that the L64 aqueous solution has smaller number of oriented interfacial water molecules. It is suggested that the rapid motion of hydrophilic parts of the adsorbed L64 disturbs the average orientation of the interfacial water molecules. On the other hand, the SF intensity from the interfacial water molecules of aqueous solutions with high ion strength did not depend on the species of the polymers in the solutions. The latter result suggests that the hydration of ions determines the structure of the interfacial water molecules.  相似文献   

8.
We have studied Fe films on Ar+ ion sputtered highly oriented pyrolitic graphite (HOPG) using scanning tunnelling microscopy (STM). The adsorbed Fe atoms form nanoparticles uniformly distributed over the substrate surface with narrow size distribution. Comparing these data with Fe deposited on non-sputtered HOPG indicates the role of substrate defects, acting as nucleation sites, on the overall film structure. However, the shape and size of individual defects do not seem to influence the shape of the nanoparticles. The correlation between the Fe film morphology and the sputtered substrate morphology is discussed taking into account the different capturing properties of sputtering-induced defects.  相似文献   

9.
Temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS) have been used to study the adsorption, desorption, molecular orientation and conformation of 1,3-butadiene on Ag(1 1 1) at 80 K. Butadiene adsorbs weakly as an s-trans conformer with the first layer oriented parallel to the silver surface and desorbs without decomposition. A very narrow line shape of the out-of-plane modes at low submonolayer coverage indicates molecular ordering within the diluted adsorbed layer, presumably through weak π-bonding interaction with the surface and intermolecular repulsive interaction. Compression within the first layer at coverages above 0.5 ML is driven by repulsive interaction as seen in both TPD and IRAS data. The IR intensity rollover and peak broadening, together with a significant shift in the TPD peak to lower temperature, indicate a reorientation of the butadiene molecule. Adsorption in the second- and multilayer is characterized by distinct IR frequency shifts and crystal field splitting effects similar to those reported for solid butadiene.  相似文献   

10.
Molecular dynamics simulations are employed to investigate the effects of temperature and size on the hydrogen-bond dynamics of interior molecules and surface molecules in a water nanocluster. The flexible three-centred (F3C) water model is invoked in the simulations. To inspect the dynamics of the interior hydrogen bonds and the surface hydrogen bonds, a spherical water nanocluster is modelled and then divided into interior molecules and surface molecules according to the density profile of the water nanocluster. It is observed that at higher temperatures the average number of hydrogen bonds decreases and yields faster hydrogen-bond relaxation for both interior molecules and surface molecules of the water nanocluster. Furthermore, the surface molecules have a lower average number of hydrogen bonds than the interior molecules. The lifetime of the surface hydrogen bonds is slightly longer than that of the interior hydrogen bonds, whereas the hydrogen-bond structural relaxation time of the surface molecules is more obviously slower than that of the interior molecules. Regarding the size effect, a larger water nanocluster is seen to have a larger average number of hydrogen bonds and a longer hydrogen-bond structural relaxation time.  相似文献   

11.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

12.
We report on the effects of substrate, ambient oxygen pressure and deposition time on the crystal structure, and morphology of Sm0.55Nd0.45NiO3 solid solution nanostructured films synthesized by pulsed-laser deposition. In each film the structure was found to be consistent with a perovskite structure with preferential planes growth and reveals a strong orientation along the orthorhombic (2 1 0) plane of the perovskite subcell for the film deposited on NdGaO3 where highly crystalline films were obtained within 15 min deposition time with a low surface roughness of 8.79 nm. Similar structure is observed on Si (1 0 0) substrate only at O2 pressure of 0.4 mbar. The surface morphology of the different samples shows a net dense film structure with several droplets population. The nano-scaled droplets are in general spherical in shape; a detailed analysis indicates that the laser ablation of this nickelate family is governed to a certain extent by a heat transfer phenomenon.  相似文献   

13.
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e-0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water.  相似文献   

14.
We have analyzed the mechanism of melting of layers adsorbed in cylindrical pores of porous materials. The goal was to understand the melting mechanism of simple fluids adsorbed in pores with heterogeneous wall surface. The studied system was a monolayer of methane molecules adsorbed in MCM-41 pore of diameter d = 4 nm. Both experimental (neutron scattering) and simulation (Monte Carlo) results proved extremely strong influence of the wall roughness on the melting mechanism. The most striking difference between melting on smooth and rough surfaces was in the temperatures of the transition. The transformation between solid-like and liquid-like monolayer phases adsorbed on a rough surface was observed in a very large temperature range and the solid like properties were observed even above the bulk methane melting temperature.  相似文献   

15.
The behaviour of silica-supported films of liquid n-hexane and n-perfluorohexane has been investigated by means of molecular dynamics simulations of model compounds. Thin films of both neat liquids and equimolar mixtures were studied with different surface interaction strengths at room temperature (300 K). The molecules tend to form layers parallel to the surface of the substrate. In agreement with recent experimental results for hexane, a low density region was found near the surface, provided that the interaction strength was low. There is no corresponding low density region for perfluorohexane. The study of the mixture indicates that perfluorohexane is preferentially adsorbed at both solid-liquid and liquid-vapour interfaces while the molecules of hexane are concentrated inside the film.  相似文献   

16.
The structures adopted by adsorbed thin films of Gay-Beme particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.  相似文献   

17.
ABSTRACT

We have investigated the interaction of mercaptopurine (MP) drug with BN nanotube, nanosheet and nanocluster using density functional theory calculations in the gas phase, and aqueous solution. We predicted that the MP drug tends to be physically adsorbed on the surface of BN nanosheet with an adsorption energy (Ead) about ?3.2?kcal/mol. The electronic properties of BN nanosheet are not affected by the MP drug, and this sheet is not a sensor. But the electronic properties of BN nanotube and nanocluster are significantly sensitive to this drug in both gas phase, and aqueous solution. The BN nanocluster suffers from a long recovery time (8.8?×?108?s) because of a strong interaction (Ead?=??28.6?kcal/mol), and this cluster is not a proper sensor for MP detection. But the BN nanotube benefits from a short recovery time about 49.5?s at room temperature, and may be a promising candidate for application in the MP sensors. The water solvent decreases the strength of interaction between the BN nanotube, and MP drug, but it does not affect the electronic sensitivity of the nanotube sensibly.  相似文献   

18.
Gold nanoclusters were directly synthesized on thiol functionalized carbon nanotubes film and characterized by means of X-ray photoelectron spectroscopy. A carbon nanotube (CNT) supporting network was produced by spreading a concentrate suspension of thiol-functionalized CNT on platinum films. To synthesize gold nanoclusters, a water solution of tetrachloroauric acid was adsorbed on the CNT substrate and reduced by UV reduction in air. Detailed analysis of the Au 4f core line enabled us to follow the chemical modifications occurring on the substrate. In particular, the XPS analysis of gold features shows a progressive reduction of the gold precursor by increasing the irradiation time. Also information on the nanocluster size distribution after each reducing treatments are obtained.  相似文献   

19.
A technique developed recently for in situ solid-state 1H NMR studies of adsorption processes has been used to probe hydration of the solid acid catalyst H-ZSM-5, yielding information on the interaction between the adsorbed water molecules and Brønsted acid sites on the H-ZSM-5 host material. Quantitative analysis of the results from the in situ experiment allows the average size of water clusters associated with the Brønsted acid sites to be determined directly, and suggests that there is a preference to form clusters comprising five–six water molecules. The in situ 1H NMR data also provide insights into kinetic aspects of the adsorption process.  相似文献   

20.
We investigate the morphology of a pentacene (C22H14) film adsorbed on the Cu(1 1 9) vicinal surface by scanning tunnelling microscopy (STM). Thermal treatment of a thick film of molecules generates a long-range ordered structure. Series of molecular rows are alternated with areas where the molecules assume two equivalent orientations. STM data analysis suggests that the ordered structure can be described by a rippled morphology. The behaviour of the film at different annealing temperatures suggests a possible explanation of the film structure as due to an adsorbate-induced modification of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号