共查询到20条相似文献,搜索用时 10 毫秒
1.
C. Gil A. Márquez R. Baños M. G. Montoya J. Gómez 《Journal of Global Optimization》2007,38(2):265-281
Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization
there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of
optimums, which constitute the so called Pareto-optimal front. Thus, the goal of multi-objective strategies is to generate
a set of non-dominated solutions as an approximation to this front. However, most problems of this kind cannot be solved exactly
because they have very large and highly complex search spaces. The objective of this work is to compare the performance of
a new hybrid method here proposed, with several well-known multi-objective evolutionary algorithms (MOEA). The main attraction
of these methods is the integration of selection and diversity maintenance. Since it is very difficult to describe exactly
what a good approximation is in terms of a number of criteria, the performance is quantified with adequate metrics that evaluate
the proximity to the global Pareto-front. In addition, this work is also one of the few empirical studies that solves three-objective
optimization problems using the concept of global Pareto-optimality. 相似文献
2.
In the present study, a modified variant of Differential Evolution (DE) algorithm for solving multi-objective optimization problems is presented. The proposed algorithm, named Multi-Objective Differential Evolution Algorithm (MODEA) utilizes the advantages of Opposition-Based Learning for generating an initial population of potential candidates and the concept of random localization in mutation step. Finally, it introduces a new selection mechanism for generating a well distributed Pareto optimal front. The performance of proposed algorithm is investigated on a set of nine bi-objective and five tri-objective benchmark test functions and the results are compared with some recently modified versions of DE for MOPs and some other Multi Objective Evolutionary Algorithms (MOEAs). The empirical analysis of the numerical results shows the efficiency of the proposed algorithm. 相似文献
3.
This paper presents a general approach to solving multi-objective programming problems with multiple decision makers. The proposal is based on optimizing a bi-objective measure of “collective satisfaction”. Group satisfaction is understood as a reasonable balance between the strengths of an agreeing and an opposing coalition, considering also the number of decision makers not belonging to any of these coalitions. Accepting the vagueness of “collective satisfaction”, even the vagueness of “person satisfaction”, fuzzy outranking relations and other fuzzy logic models are used. 相似文献
4.
A multi-level solution method is presented for multi-objective optimization of large-scale systems associated with the hierarchical structure of decision-making. The method, consisting of a multi-level problem formulation and an interactive algorithm, has distinct advantages in handling the difficulties which are often experienced in engineering. The method is illustrated by its application to an optimal design of a processing system. 相似文献
5.
In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances. 相似文献
6.
This paper extended the concept of the technique for order preference by similarity to ideal solution (TOPSIS) to develop a methodology for solving multi-level non-linear multi-objective decision-making (MLN-MODM) problems of maximization-type. Also, two new interactive algorithms are presented for the proposed TOPSIS approach for solving these types of mathematical programming problems. The first proposed interactive TOPSIS algorithm includes the membership functions of the decision variables for each level except the lower level of the multi-level problem. These satisfactory decisions are evaluated separately by solving the corresponding single-level MODM problems. The second proposed interactive TOPSIS algorithm lexicographically solves the MODM problems of the MLN-MOLP problem by taking into consideration the decisions of the MODM problems for the upper levels. To demonstrate the proposed algorithms, a numerical example is solved and compared the solutions of proposed algorithms with the solution of the interactive algorithm of Osman et al. (2003) [4]. Also, an example of an application is presented to clarify the applicability of the proposed TOPSIS algorithms in solving real world multi-level multi-objective decision-making problems. 相似文献
7.
8.
Fang Lu 《Applicable analysis》2013,92(8):1567-1586
In the context of Euclidean spaces, we present an extension of the Newton-like method for solving vector optimization problems, with respect to the partial orders induced by a pointed, closed and convex cone with a nonempty interior. We study both exact and inexact versions of the Newton-like method. Under reasonable hypotheses, we prove stationarity of accumulation points of the sequences produced by Newton-like methods. Moreover, assuming strict cone-convexity of the objective map to the vector optimization problem, we establish convergence of the sequences to an efficient point whenever the initial point is in a compact level set. 相似文献
9.
Self-adaptive velocity particle swarm optimization for solving constrained optimization problems 总被引:4,自引:0,他引:4
Particle swarm optimization (PSO) is originally developed as an unconstrained optimization technique, therefore lacks an explicit
mechanism for handling constraints. When solving constrained optimization problems (COPs) with PSO, the existing research
mainly focuses on how to handle constraints, and the impact of constraints on the inherent search mechanism of PSO has been
scarcely explored. Motivated by this fact, in this paper we mainly investigate how to utilize the impact of constraints (or
the knowledge about the feasible region) to improve the optimization ability of the particles. Based on these investigations,
we present a modified PSO, called self-adaptive velocity particle swarm optimization (SAVPSO), for solving COPs. To handle
constraints, in SAVPSO we adopt our recently proposed dynamic-objective constraint-handling method (DOCHM), which is essentially
a constituent part of the inherent search mechanism of the integrated SAVPSO, i.e., DOCHM + SAVPSO. The performance of the
integrated SAVPSO is tested on a well-known benchmark suite and the experimental results show that appropriately utilizing
the knowledge about the feasible region can substantially improve the performance of the underlying algorithm in solving COPs. 相似文献
10.
Cosimo Resina 《European Journal of Operational Research》1985,21(1):93-100
In this paper a general problem of constrained minimization is studied. The minima are determined by searching for the asymptotical values of the solutions of a suitable system of ordinary differential equations.For this system, if the initial point is feasible, then any trajectory is always inside the set of constraints and tends towards a set of critical points. Each critical point that is not a relative minimum is unstable. For formulas of one-step numerical integration, an estimate of the step of integration is given, so that the above mentioned qualitative properties of the system of ordinary differential equations are kept. 相似文献
11.
A cooperative strategy for solving dynamic optimization problems 总被引:1,自引:0,他引:1
Optimization in dynamic environments is a very active and important area which tackles problems that change with time (as most real-world problems do). In this paper we present a new centralized cooperative strategy based on trajectory methods (tabu search) for solving Dynamic Optimization Problems (DOPs). Two additional methods are included for comparison purposes. The first method is a Particle Swarm Optimization variant with multiple swarms and different types of particles where there exists an implicit cooperation within each swarm and competition among different swarms. The second method is an explicit decentralized cooperation scheme where multiple agents cooperate to improve a grid of solutions. The main goals are: firstly, to assess the possibilities of trajectory methods in the context of DOPs, where populational methods have traditionally been the recommended option; and secondly, to draw attention on explicitly including cooperation schemes in methods for DOPs. The results show how the proposed strategy can consistently outperform the results of the two other methods. 相似文献
12.
E. G. Birgin L. F. Bueno N. Krejić J. M. Martínez 《Journal of Global Optimization》2011,51(4):715-742
In Low Order-Value Optimization (LOVO) problems the sum of the r smallest values of a finite sequence of q functions is involved as the objective to be minimized or as a constraint. The latter case is considered in the present paper.
Portfolio optimization problems with a constraint on the admissible Value at Risk (VaR) can be modeled in terms of a LOVO
problem with constraints given by Low order-value functions. Different algorithms for practical solution of this problem will
be presented. Using these techniques, portfolio optimization problems with transaction costs will be solved. 相似文献
13.
Mohammedi R. Abdel-Aziz 《Numerical Functional Analysis & Optimization》2013,34(3-4):319-336
An algorithm for solving the problem of minimizing a quadratic function subject to ellipsoidal constraints is introduced. This algorithm is based on the impHcitly restarted Lanczos method to construct a basis for the Krylov subspace in conjunction with a model trust region strategy to choose the step. The trial step is computed on the small dimensional subspace that lies inside the trust region. One of the main advantages of this algorithm is the way that the Krylov subspace is terminated. We introduce a terminationcondition that allows the gradient to be decreased on that subspace. A convergence theory for this algorithm is presented. It is shown that this algorithm is globally convergent and it shouldcope quite well with large scale minimization problems. This theory is sufficiently general that it holds for any algorithm that projects the problem on a lower dimensional subspace. 相似文献
14.
《Optimization》2012,61(2):249-263
New algorithms for solving unconstrained optimization problems are presented based on the idea of combining two types of descent directions: the direction of anti-gradient and either the Newton or quasi-Newton directions. The use of latter directions allows one to improve the convergence rate. Global and superlinear convergence properties of these algorithms are established. Numerical experiments using some unconstrained test problems are reported. Also, the proposed algorithms are compared with some existing similar methods using results of experiments. This comparison demonstrates the efficiency of the proposed combined methods. 相似文献
15.
R. Fletcher 《Mathematical Programming》1972,2(1):133-165
An algorithm for minimization of functions of many variables, subject possibly to linear constraints on the variables, is described. In it a subproblem is solved in which a quadratic approximation is made to the object function and minimized over a region in which the approximation is valid. A strategy for deciding when this region should be expanded or contracted is given. The quadratic approximation involves estimating the hessian of the object function by a matrix which is updated at each iteration by a formula recently reported by Powell [6]. This formula enables convergence of the algorithm from any feasible point to be proved. Use of such an approximation, as against using exact second derivatives, also enables a reduction of about 60% to be made in the number of operations to solve the subproblem. Numerical evidence is reported showing that the algorithm is efficient in the number of function evaluations required to solve well known test problems.This paper was presented at the 7th International Mathematical Programming Symposium 1970, The Hague, The Netherlands. 相似文献
16.
Li-Yeh Chuang 《Applied mathematics and computation》2011,217(16):6900-6916
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The introduced catfish particles improve the performance of PSO considerably. Unlike other ordinary particles, the catfish particles initialize a new search from extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not changed for a certain number of consecutive iterations. This results in further opportunities of finding better solutions for the swarm by guiding the entire swarm to promising new regions of the search space and accelerating the search. The introduced chaotic maps strengthen the solution quality of PSO and CatfishPSO significantly. The resulting improved PSO and CatfishPSO are called chaotic PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), respectively. PSO, C-PSO, CatfishPSO, C-CatfishPSO, as well as other advanced PSO procedures from the literature were extensively compared on several benchmark test functions. Statistical analysis of the experimental results indicate that the performance of C-CatfishPSO is better than the performance of PSO, C-PSO, CatfishPSO and that C-CatfishPSO is also superior to advanced PSO methods from the literature. 相似文献
17.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λ, ρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λ, ρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λ, ρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed. 相似文献
18.
Uriel G. Rothblum 《Mathematical Programming》1978,15(1):77-86
The purpose of this paper is to establish sufficient conditions for the existence of solutions to mathematical programs where the variables of the solution satisfy given proportions. These conditions rely on convergence properties of powers of nonnegative matrices when these powers form a bounded sequence. We assume that if an arbitrary vectorx is premultiplied by elements of this sequence, the limit of the sequence (which might be a Cesaro (C, 1) limit) gives an improvement of the objective.This research was supported by NSF Grants ENG 76-15599 and ENG76-12266 and ONR Contract N00014-75-C-0493. 相似文献
19.
We are interested in a problem introduced by Vassilvitskii and Yannakakis (2005), the computation of a minimum set of solutions that approximates within an accuracy ε the Pareto set of a multi-objective optimization problem. We mainly establish a new 3-approximation algorithm for the bi-objective case. We also propose a study of the greedy algorithm performance for the tri-objective case when the points are given explicitly, answering an open question raised by Koltun and Papadimitriou in (2007). 相似文献
20.
Oliver Schütze Víctor Adrián Sosa Hernández Heike Trautmann Günter Rudolph 《Journal of Heuristics》2016,22(3):273-300
We present a new hybrid evolutionary algorithm for the effective hypervolume approximation of the Pareto front of a given differentiable multi-objective optimization problem. Starting point for the local search (LS) mechanism is a new division of the decision space as we will argue that in each of these regions a different LS strategy seems to be most promising. For the LS in two out of the three regions we will utilize and adapt the Directed Search method which is capable of steering the search into any direction given in objective space and which is thus well suited for the problem at hand. We further on integrate the resulting LS mechanism into SMS-EMOA, a state-of-the-art evolutionary algorithm for hypervolume approximations. Finally, we will present some numerical results on several benchmark problems with two and three objectives indicating the strength and competitiveness of the novel hybrid. 相似文献