首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of sub-2 microm porous particle liquid chromatography (LC) operated at elevated temperatures, coupled with time-of-flight mass spectrometry (MS), to the separation and identification of metabolites of ibuprofen present in human urine following oral administrations is illustrated. The LC/MS system generated a high-resolution analytical separation that, with an analysis time of 20 min, provided a peak capacity in the order of ca. 350. Using this system a total of nine glucuronides of the drug and its metabolites were detected, including a number of isomeric acyl glucuronides of ibuprofen itself, a side-chain-oxidized carboxylic acid acyl glucuronide and a number of acyl glucuronides of various hydroxylated metabolites. The identities of the metabolites were confirmed by their accurate mass values and the presence of the common fragment ions from ibuprofen.  相似文献   

2.
This paper describes an extraction method using a polypropylene membrane supporting dihexyl ether (three-phase hollow fiber-based liquid phase microextraction (HF-LPME)) for the analysis of several pharmaceuticals (salicylic acid (SAC), ibuprofen (IBU) and diclofenac (DIC)) followed by a HPLC determination using a monolithic silica type HPLC column, that allows lower retention times than the usual packed columns with adequate resolution. Detection was realized by means of a coupled in series diode array (DAD) and fluorescence (FLD) detectors. HF-LPME is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. Detection limits by DAD are 12, 53 and 40 ng mL−1 for salicylic acid, diclofenac and ibuprofen, respectively and by FLD 7 and 2 ng mL−1 for salicylic acid, and ibuprofen. The method has been successfully applied to their direct determination in human urine and the results obtained demonstrated that could be also applied to the determination of the corresponding metabolites.  相似文献   

3.
NMR is a fast method for obtaining a holistic snapshot of the metabolome and also offers quantitative information without separating the compounds present in a complex mixture. Identification of the metabolites present in a plant extract sample is a crucial step for all plant metabolomics studies. In the present work, we used various two dimensional (2D) NMR methods such as J-resolved NMR, total correlation spectroscopy (TOCSY), and heteronuclear single quantum coherence sensitivity enhanced NMR spectroscopy for the identification of 36 common metabolites present in Coriandrum sativum L. seed extract. The identified metabolites belong to the following classes: organic acids, amino acids, and carbohydrates. 1H NMR spectra of such complex mixtures in general display tremendous signal overlap due to the presence of a large number of metabolites with closely resonating multiplet signals. This signal overlapping leads to ambiguity in an assignment, and hence, identification of metabolites becomes tedious or impossible in many cases. Therefore, the utility of pure-shift proton spectrum along the indirect (F1) dimension of the F1-PSYCHE-TOCSY spectrum is demonstrated for overcoming ambiguity in assignment of metabolites in crowded spectral regions from Coriandrum sativum L. seed extract sample. Because pure-shift NMR methods yield ultrahigh resolution spectrum (i.e., a singlet peak per chemical site) along one or more dimensions, such spectra provide better identification of metabolites compared with regular 2D TOCSY where signal overlap and peak distortions lead to ambiguity in the assignment. Nine metabolites were unambiguously assigned by pure-shift F1-PSYCHE-TOCSY spectrum, which was unresolved in regular TOCSY spectrum.  相似文献   

4.
Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. This paper describes a three-phase HF-LPME method for ibuprofen using a polypropylene membrane supporting dihexyl ether followed by a chemiluminescence (CL) determination using the CL enhancement on the acidic permanganate-sulfite system in a FIA configuration which is the first time that both techniques have been combined for analytical purposes. The CL intensity (peak area) was proportional to the log of ibuprofen concentration in the donor phase over the range 0.1-20 μg mL−1. The detection limit was 0.03 μg mL−1 of ibuprofen in the donor phase. The method was satisfactory reproducible and has been applied to the ibuprofen determination in pharmaceuticals and in real human urine samples.  相似文献   

5.
Liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were applied to characterize drug metabolites. Although these two methods have overcome the identification and structural characterization of metabolites analysis, they remain time‐consuming processes. In this study, a novel multiple‐stage tandem mass spectrometric method (MSn) was evaluated for identification and characterization of new minor metabolism profiling of penicillin G, one of the β‐lactam antibiotics, in human serum. Seven minor metabolites including five phase I metabolites and two phase II metabolites of penicillin G were identified by using data‐dependent LC/MSn screening in one chromatographic run. The accuracy masses of seven identified metabolites of penicillin G were also confirmed by mass spectral calibration software (MassWorks?). The proposed data‐dependent LC/MSn method is a powerful tool to provide large amounts of the necessary structural information to characterize minor metabolite in metabolism profiling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A simple reversed-phase HPLC method has been developed for determination of flurbiprofen in rat plasma, excised skin extract, and transdermal patch formulations. The mobile phase was methanol–1% (v/v) phosphoric acid in water, 80:20 (v/v), at a flow rate of 0.5 mL min-1; ibuprofen was used as internal standard. Flurbiprofen and ibuprofen was detected by UV absorption at 254 nm and 220 nm, respectively. The limit of quantitation was 0.1 µg mL-1. The response was linearly dependent on concentration in the range 0.1–10 µg mL-1, and accuracy and reproducibility were good. At these concentrations intraday and interday assay variability were below 8%. Recovery of flurbiprofen was greater than 94% over the linear range of calibration plot.  相似文献   

7.
《Arabian Journal of Chemistry》2020,13(11):7652-7664
Seaweeds are known as excellent sources of unique bioactive metabolites. In the present study, proton nuclear magnetic resonance (1H NMR) combined with principal component analysis (PCA) was used to distinguish the metabolic variations in Brown seaweed, Sargassum polycystum treated under different drying processes. The study also evaluated the phytochemistry, antioxidant, and antimicrobial effects of S. polycystum extracted in different solvents. Mutually under the different drying processes investigated, a total of 12 metabolites were identified from 1H NMR analysis. Freeze drying emerged as the most efficient process that preserved most of the potentially beneficial metabolites in the samples. The results of the qualitative phytochemical screening of differentially dried S. polycystum extracts revealed the presence of various secondary metabolites. The 70% ethanol extract exhibited the highest total phenolic (627 ± 50.81 mg GAE/100 g dried samples) and also displayed the highest DPPH scavenging activity (61.4 ± 0.171%) at the highest concentration (3 mg ml−1) tested. Methanol extract on the other hand contained the highest total antioxidant capacity (121.00 ± 0.003 mmol/g) followed by 70% ethanol extract (120.00 ± 0.001 mmol/g) at concentration of 1.25 mg/mL. The 70% ethanol extract also showed inhibition zone towards all bacteria samples tested compared to others solvent extracts. Based on these results, the identification of metabolites variations using PCA is considered as very useful procedure as a basis to recommend the most efficient processing (drying) method. The potential utilization of the tested Brown seaweed S. polycystum species as a source of antioxidants and antibacterial agents were also highlighted. The commercial cultivation of the species therefore, needs to be encouraged and promoted.  相似文献   

8.
The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.  相似文献   

9.
Li  Zhixiong  Song  Xinmeng  Fu  Zhiwen  Wu  Bin  Ling  Yun  Sun  Zhaolin  Chen  Mingcang  Xu  Desheng  Huang  Chenggang 《Chromatographia》2013,76(13):767-780

The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.

  相似文献   

10.
A stereospecific reversed-phase high-performance liquid chromatographic (HPLC) method has been developed to simultaneously quantitate the stereoisomers of the two major metabolites of ibuprofen: hydroxyibuprofen and carboxyibuprofen. The metabolites were derivatized with S-(alpha)-methylbenzylamine to form diastereomeric amides which were separated and quantified on a C8 column. The validity of the stereoselective assay was confirmed by comparison with a non-stereoselective HPLC method. The stereoselective assay was applied to the quantification of all the stereoisomeric ibuprofen metabolites in urine from human volunteers dosed with racemic ibuprofen or the individual enantiomers of ibuprofen. Significant substrate and product stereo-selectivities were observed in the formation of carboxyibuprofen.  相似文献   

11.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is an abundantly present heterocyclic aromatic amine which is found to be carcinogenic in rodents, mice and rats. The biotransformation of PhIP is extensive and involves both the formation of bioactivated as well as detoxification metabolites. In order to understand its carcinogenicity, the metabolism of PhIP needs to be studied. Numerous metabolites of PhIP have been described but, so far, assays for their quantitative determination in biological matrices are scarce. We present the development and application of an assay, using reversed phase liquid chromatography coupled to ultraviolet and mass spectrometry detectors for the quantification of PhIP, three phase I and nine phase II metabolites in urine. Additionally, the identification of two PhIP-sulfates by the use of NMR is presented. Sample pretreatment consisted of straightforward dilution of urine. PhIP and its metabolites were shown to be stable in diluted urine for at least 22 h when stored at 2?C8 °C. Precision of the analysis was within 15%. The assay has been successfully applied for the quantification of PhIP and 12 of its metabolites in urine from mice that received 200 mg kg?1 PhIP via oral gavage.  相似文献   

12.
本文采用高效液相色谱与电喷雾质谱联用技术在线分析鉴定了车前草提取物中的三种苯乙醇苷化合物。实验采用反相C18色谱柱,0.2%的醋酸水溶液和乙腈梯度洗脱,车前草中的苯乙醇苷化合物得到很好的分离。在电喷雾质谱负离子条件下,获得了三种苯乙醇苷化合物的分子离子峰,分子量信息,进一步通过质谱的源内CID技术得到相应化合物的结构信息。通过得到的这些信息与文献中的已知化合物或标准品对照从而推断出化合物的结构。  相似文献   

13.
An analytical method was developed for the identification of primary vitamin D3 metabolites in human urine using liquid chromatography tandem mass spectrometry in positive mode. Urine samples were purified using C18 solid-phase extraction cartridges and analytical separations were performed by reversed phase liquid chromatography in gradient mode using ammonium acetate (0.01 mol L?1) and acetonitrile as the mobile phases. Identification and structural elucidation of the metabolites were carried out by comparison with mass spectral fragmentation behavior of vitamin D3 and retention characteristics. Three primary urinary vitamin D3 metabolites were identified as 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and vitamin D3 sulphate, respectively.  相似文献   

14.
Organophosphate triesters tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate are widely used flame retardants (FRs) present in many products common to human environments, yet understanding of human exposure and health effects of these compounds is limited. Monitoring urinary metabolites as biomarkers of exposure can be a valuable aid for improving this understanding; however, no previously published method exists for the analysis of the primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), in human urine. Here, we present a method to extract the metabolites BDCPP and diphenyl phosphate (DPP) in human urine using mixed-mode anion exchange solid phase extraction and mass-labeled internal standards with analysis by atmospheric pressure chemical ionization liquid chromatography tandem mass spectrometry. The method detection limit was 8 pg mL−1 urine for BDCPP and 204 pg mL−1 for DPP. Recoveries of analytes spiked into urine ranged from 82 ± 10% to 91 ± 4% for BDCPP and from 72 ± 12% to 76 ± 8% for DPP. Analysis of a small number of urine samples (n = 9) randomly collected from non-occupationally exposed adults revealed the presence of both BDCPP and DPP in all samples. Non-normalized urinary concentrations ranged from 46–1,662 pg BDCPP mL−1 to 287–7,443 pg DPP mL−1, with geometric means of 147 pg BDCPP mL−1 and 1,074 pg DPP mL−1. Levels of DPP were higher than those of BDCPP in 89% of samples. The presented method is simple and sufficiently sensitive to detect these FR metabolites in humans and may be applied to future studies to increase our understanding of exposure to and potential health effects from FRs.  相似文献   

15.
NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl‐selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N‐edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here, we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses, for example. Utilizing the 2‐bond or 3‐bond 15N‐1H couplings, the 15N‐edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl‐containing compounds at NMR‐detectable levels, six of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The spineless cuttlefish Sepiella inermis encompasses a major share in the marine fisheries sector, and represents as a culinary delicacy in many cultures. Bioactivity-guided fractionation of methanol:ethyl acetate (MeOH:EtOAc, 1:1) extract of the edible parts of the species ensued in identification of two hexahydro chromenyl analogues namely, methyl 7-ethyl-hexahydro-8a-methyl-2H-chromene-4-carboxylate (1) and methyl 1-acetoxy-hexahydro-3-methyl-3-propyl-1H-isochromene-4-carboxylate (2). The isolated metabolites were checked for their radical scavenging and anti-inflammatory potentials by selective in vitro models. The isochromenyl derivative exhibited potential 2,2-diphenyl-1-picryl-hydrazil and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (IC50?<?0.45?mg mL?1) radical-scavenging capacities along with pro-inflammatory cyclooxygenase-2 (COX-2) (IC50 0.75?mg mL?1) and 5-lipoxygenase (5-LOX) (IC50 0.77?mg mL?1) inhibitory activities. The titled compounds displayed the selectivity indices (IC50 anti-COX-1/IC50 anti-COX-2) greater than 1.25, in comparison with synthetic anti-inflammatory drug ibuprofen (0.44), which attributed to their greater selectivity towards inducible pro-inflammatory enzyme COX-2.  相似文献   

17.
《Analytical letters》2012,45(17):3256-3266
Abstract

A rapid, sensitive, and specific liquid chromatographic‐electrospray ionization (ESI) tandem ion trap mass spectrometric method has been developed for identification of physostigmine and its metabolites in rat urine. 300 µg kg–1 of physostigmine were used as a safe oral gavage dose for studies on its metabolites. 0–24 h urine was purified using a C18 solid‐phase extraction cartridge, and then detected by an on‐line MS detector. Identification and structural elucidation of the metabolites were performed by comparing their MSn spectra with physostigmine. Six metabolites and unchanged physostigmine existed in rat urine. All of the metabolites were reported for the first time.  相似文献   

18.
For the first time QuEChERS extraction of sewage sludge was combined with the automatic solid-phase pre-concentration and purification of the extract (following indicated as SPE) and LC-MS/MS analysis, for the determination of the non-steroidal anti-inflammatory drugs acetylsalicylic acid (ASA), diclofenac (DIC), fenbufen (FEN), flurbiprofen (FLU), ketoprofen (KET), ibuprofen (IBU) and naproxen (NAP), and their metabolites salicylic acid (SAL), 4′-hydroxydiclofenac (4′-HYDIC), 1-hydroxyibuprofen (1-HYIBU), 2-hydroxyibuprofen (2-HYIBU), 3-hydroxyibuprofen (3-HYIBU) and o-desmethylnaproxen (O-DMNAP). Various commercial pellicular stationary phases (i.e. silica gel functionalized with octadecyl, biphenyl, phenylhexyl and pentafluorophenyl groups) were preliminarily investigated for the resolution of target analytes and different sorbent phases (i.e. octyl or octadecyl functionalized silica gel and a polymeric phase functionalized with N-benzylpyrrolidone groups) were tested for the SPE phase. The optimized method involves the QuEChERS extraction of 1 g of freeze-dried sludge with 15 mL of water/acetonitrile 1/2 (v/v), the SPE of the extract with the N-benzylpyrrolidone polymeric phase and the water/acetonitrile gradient elution on the pentafluorophenyl stationary phase at room temperature. Matrix effect was always suppressive and in most cases low, being it ≤20% for ASA, DIC, FLU, KET, IBU, 1-HYIBU, 2-HYIBU, 3-HYIBU, NAP and O-DMNAP, and included in the range of 35–47% for the other analytes. Recoveries were evaluated at three spiking levels, evidencing almost quantitative values for HYIBUs and O-DMNAP; for ASA, SAL and KET the recoveries were included in between 50 and 76%, whereas for the other compounds they ranged from 36% to 55%. The proposed method showed better analytical performances than those so far published, being suitable for target compound determination in real samples from tens of pg g−1 to ng g−1 of freeze-dried sludge, with a total analysis time of 30 min per sample.  相似文献   

19.
An accurate, sensitive and least time consuming reverse phase high performance liquid chromatographic (RP‐HPLC) method for the estimation of captopril in the presence of non steroidal anti‐inflammatory drugs in formulation and human serum has been developed and validated. Chromatographic separation was conducted on prepacked Purospher star C18 (5 μm, 25 × 0.46 cm) column at room temperature using methanol:water (80:20 v/v) as a mobile phase, pH adjusted at 2.8 with o‐phosphoric acid and at a flow rate of 1.0 mL min−1, while UV detection was performed at 227 nm. The limit of detection and quantification for captopril were 1 and 0.35 ng mL−1, while that for (NSAID's) i.e. flurbiprofen, ibuprofen, diclofenac sodium and mefenamic acid LOD were 0.2, 1, 2 and 0.4 ng mL−1 respectively and LOQ were 0.9, 2.9, 8 and 1 ng mL−1 Analytical recovery was > 98.1%. The method used for the quantitative analysis of commonly administered non steroidal anti‐inflammatory drugs (NSAID's) i.e. ibuprofen, flurbiprofen, diclofenac sodium and mefenamic acid alone or in combination with captopril from API (active pharmaceutical ingredients), dosage formulations and in human serum. The established method is rapid (RT < 12 min), accurate (recovery > 98.1%), selective (no interference of excepients and other commonly used drugs and food) and sensitive (LOQ 3.5 ng mL;‐1) and reproducible (SD ± 0.003).  相似文献   

20.
The selective estrogen receptor modulator tamoxifen is used in the treatment of early and advanced breast cancer and in selected cases for breast cancer prevention in high-risk subjects. The cytochrome P450 enzyme system and flavin-containing monooxygenase are responsible for the extensive metabolism of tamoxifen into several phase I metabolites that vary in toxicity and potencies towards estrogen receptor (ER) alpha and ER beta.An extensive overview of publications on the determination of tamoxifen and its phase I metabolites in biological samples is presented. In these publications techniques were used such as capillary electrophoresis, liquid, gas and thin layer chromatography coupled with various detection techniques (mass spectrometry, ultraviolet or fluorescence detection, liquid scintillation counting and nuclear magnetic resonance spectroscopy). A trend is seen towards the use of liquid chromatography coupled to mass spectrometry (LC-MS). State-of-the-art LC-MS equipment allowed for identification of unknown metabolites and quantification of known metabolites reaching lower limit of quantification levels in the sub pg mL−1 range. Although tamoxifen is also metabolized into phase II metabolites, the number of publications reporting on phase II metabolism of tamoxifen is scarce. Therefore the focus of this review is on phase I metabolites of tamoxifen.We conclude that in the past decades tamoxifen metabolism has been studied extensively and numerous metabolites have been identified. Assays have been developed for both the identification and quantification of tamoxifen and its metabolites in an array of biological samples. This review can be used as a resource for method transfer and development of analytical methods used to support pharmacokinetic and pharmacodynamic studies of tamoxifen and its phase I metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号